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Preface to Second Edition

In the second edition we have significantly expanded the chapter on stochastic
integration in order to give an introduction to modern mathematical finance.
We have expanded the discussion of It6’s formula, introduced the Girsanov
transformation and the Feynman-Kac formula, and derived the Black-Scholes
formula for pricing options. We have tried to present this material in the
same styles as other topics, that is, without complete mathematical details,
but with enough ideas to explain to the reader why formulas are true.

We have added a section on maximal inequalities to the martingale sec-
tion and included more material on Brownian motion. We have included a
few more examples throughout the book and have increased the number of
exercises at the end of the chapters. We have also made corrections and mi-
nor revisions in many places and included some recommendations for further
reading.






Preface to First Edition

This book is an outgrowth of lectures in Mathematics 240, “Applied Stochas-
tic Processes,” which I have taught a number of times at Duke University.
The majority of the students in the course are graduate students from de-
partments other than mathematics, including computer science, economics,
business, biological sciences, psychology, physics, statistics, and engineering.
There have also been graduate students from the mathematics department as
well as some advanced undergraduates. The mathematical background of the
students varies greatly, and the particular areas of stochastic processes that
are relevant for their research also vary greatly.

The prerequisites for using this book are a good calculus-based undergrad-
uate course in probability and a course in linear algebra including eigenvalues
and eigenvectors. I also assume that the reader is reasonably computer liter-
ate. The exercises assume that the reader can write simple programs and has
access to some software for linear algebra computations. In all of my classes,
students have had sufficient computer experience to accomplish this. Most
of the students have also had some exposure to differential equations and I
use such ideas freely, although I have a short section on linear differential
equations in the preliminary chapter.

I have tried to discuss key mathematical ideas in this book, but I have not
made an attempt to put in all the mathematical details. Measure theory is not
a prerequisite but I have tried to present topics is a way such that readers who
have some knowledge of measure theory can fill in details. Although this is a
book intended primarily for people with applications in mind, there are few
real applications discussed. True applications require a good understanding
of the field being studied and it is not a goal of this book to discuss the many
different fields in which stochastic processes are used. I have instead chosen
to stick with the very basic examples and let the experts in other fields decide
when certain mathematical assumptions are appropriate for their application.

Chapter 1 covers the standard material on finite Markov chains. I have
not given proofs of the convergence to equilibrium but rather have empha-
sized the relationship between the convergence to equilibrium and the size of
the eigenvalues of the stochastic matrix. Chapter 2 deals with infinite state
space. The notions of transience, null recurrence, and positive recurrence
are introduced, using as the main example, a random walk on the nonnega-
tive integers with reflecting boundary. The chapter ends with a discussion of
branching processes.

Continuous-time Markov chains are discussed in Chapter 3. The discussion

xi



xii

centers on three main types: Poisson process, finite state space, and birth-
and-death processes. For these processes I have used the forward differential
equations to describe the evolution of the probabilities. This is easier and more
natural than the backward equations. Unfortunately, the forward equations
are not a legitimate means to analyze all continuous-time Markov chains and
this fact is discussed briefly in the last section. One of the main examples of
a birth-and-death process is a Markovian queue.

I have included Chapter 4 on optimal stopping of Markov chains as one
example in the large area of decision theory. Optimal stopping has a nice
combination of theoretical mathematics leading to an algorithm to solve a
problem. The basic ideas are also similar to ideas presented in Chapter 5.

The idea of a martingale is fundamental in much of stochastic processes,
and the goal of Chapter 5 is to give a solid introduction to these ideas. The
modern definition of conditional expectation is first discussed and the idea
of “measurable with respect to F,, the information available at time n” is
used freely without worrying about giving it a rigorous meaning in terms
of o-algebras. The major theorems of the area, optional sampling and the
martingale convergence theorem, are discussed as well as their proofs. Proofs
are important here since part of the theory is to understand why the theorems
do not always hold. I have included a discussion of uniform integrability.

The basic ideas of renewal theory are discussed in Chapter 6. For nonlattice
random variables the renewal equation is used as the main tool of analysis
while for lattice random variables a Markov chain approach is used. As an
application, queues with general service times are analyzed.

Chapter 7 discusses a couple of current topics in the realm of reversible
Markov chains. First a more mathematical discussion about the rate of con-
vergence to equilibrium is given, followed by a short introduction to the idea
of Markov chain algorithms which are becoming very important in some areas
of physics, computer science, and statistics. The final section on recurrence is
a nice use of “variational” ideas to prove a result that is hard to prove directly.

Chapter 8 gives a very quick introduction to a large number of ideas in
Brownian motion. It is impossible to make any attempt to put in all the math-
ematical details. I have discussed multidimensional as well as one-dimensional
Brownian motion and have tried to show why Brownian motion and the heat
equation are basically the same subject. I have also tried to discuss a little
of the fractal nature of some of the sets produced by Brownian motion. In
Chapter 9, a very short introduction to the idea of stochastic integration is
given. This also is a very informal discussion but is intended to allow the
students to at least have some ideas of what a stochastic integral is.

This book has a little more than can be covered in a one semester course.
In my view the basic course consists of Chapters 1, 2, 3, 5, and 8. Which
of the remaining chapters I cover depends on the particular students in the
class that semester. The basic chapters should probably be done in the order
listed, but the other chapters can be done at any time. Chapters 4 and 7 use
the previous material on Markov chains; Chapter 6 uses Markov chains and



xiii

martingales in the last section; and Chapter 9 uses the definition of Brownian
motion as well as martingales.

I would like to thank the students in Math 240 in Spring 1992 and Spring
1994 for their comments and corrections on early versions of these notes. I
also thank Rick Clelland, who was my assistant when I was preparing the first
version in 1992, and the reviewers, Michael Phelan and Daniel C. Wiener, for
their suggestions. During the writing of this book, I was partially supported
by the National Science Foundation.






Chapter O

Preliminaries

0.1 Introduction

A stochastic process is a random process evolving with time. More precisely,
a stochastic process is a collection of random variables X; indexed by time.
In this book, time will always be either a subset of the nonnegative integers
{0,1,2,...} or a subset of [0,00), the nonnegative real numbers. In the first
case we will call the process discrete time, and in the second case continuous
time. The random variables X; will take values in a set that we call the state
space. We will consider cases both where the state space is discrete, i.e., a
finite or countably infinite set, and cases where the state space is continuous,
e.g., the real numbers R or d-dimensional space R.

The study of deterministic (nonrandom) processes changing with time leads
one to the study of differential equations (if time is continuous) or difference
equations (if time is discrete). A typical (first-order) differential equation is
of the form

y'(t) = F(t,y(t)).

Here the change in the function y(¢) depends only on ¢ and the value y(t)
and not on the values at times before ¢. A large class of stochastic processes
also have the property that the change at time ¢ is determined by the value of
the process at time ¢ and not by the values at times before t. Such processes
are called Markov processes. The study of such processes is closely related
to linear algebra, differential equations, and difference equations. We assume
that the reader is familiar with linear algebra. In the next section we review
some facts about linear differential equations that will be used and in the
following section we discuss difference equations.

0.2 Linear Differential Equations

Here we briefly review some facts about homogeneous linear differential
equations with constant coefficients. Readers who want more detail should
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consult any introductory text in differential equations. Consider the homoge-
neous differential equation

Y™ (8) + a1y V() + -+ @y (8) + aoy(t) = 0, (0.1)
where ag, ... ,a,—1 are constants. For any initial conditions
y(0) = bo, ¥'(0) = b1, ..., y™"D(0) = bn_1,

there is a unique solution to (0.1) satisfying these conditions. To obtain such
a particular solution, we first find the general solution. Suppose y;(t),...
yn(t) are linearly independent solutions to (0.1). Then every solution can be
written in the form

y(t) = ayi(t) + -+ cayn(l),

for constants ¢y, ... , ¢,. For a given set of initial conditions we can determine
the appropriate constants.

The solutions ¥,...,y, are found by looking for solutions of the form
y(t) = e*. Plugging in, we see that such a function y(t) satisfies the equation
if and only if

A"+ A A b g N+ ap = 0.

If this polynomial has n distinct roots Ay, ... , A, we get n linearly independent
solutions et ...  e*?!. The case of repeated roots is a little trickier, but with
a little calculation one can show that if A is a root of multiplicity j, then
eM teM .. t771eM are all solutions. Hence for each root of multiplicity 7,
we get j linearly independent solutions, and combining them all we get n
linearly independent solutions as required.

Now consider the first-order linear system of equation

Yi(t) = anyi(t) + a12y2(t) + -+ + arnyn(t)
Yo(t) = a21y1 (t) + a2y (t) + -+ + a2nyn(t)

Yn(t) = an1y1 (t) + an2ya(t) + - + Gnnyn(t).
This can be written as a single vector valued equation:
y'(t) = Ay(t).

Here §(t) = [y1(t), ... , yn(t)] (more precisely, the transpose of this vector) and
A is the matrix of coefficients (a;;). For any initial vector & = (vy,...,vp),
there is a unique solution to this equation satisfying §(0) = ©. This solution
can most easily be written in terms of the exponential of the matrix,

5(t) = etAa.
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This exponential can be defined in terms of a power series:

2L (tA)Y
eth =3 (tA)
§=0

4!

For computational purposes one generally tries to diagonalize the matrix A.
Suppose that A = Q'DQ for some diagonal matrix

dy0 -0
0 dy---0
D=|. . . .
00 ---d,
Then
eth 0
tda .
eA = QlePQ = Q! 0 -0 Q.
0 0 egldn

It is not true that every matrix can be diagonalized as above. However, every
matrix A can be written as Q7 !JQ where J is in Jordan canonical form.
Taking exponentials of matrices in Jordan form is only slightly more difficult
than taking exponentials of diagonal matrices. See a text on linear algebra
for more details.

0.3 Linear Difference Equations

The theory of linear difference equations is very similar to that of linear
differential equations. However, since the theory is generally not studied in
introductory differential equations courses and since difference equations arise
naturally in discrete-time Markov chains, we will discuss their solution in more
detail. First consider the equation

fn)y=af(n—-1)+bf(n+1), K<n<N. (0.2)

Here f(n) is a function defined for integers K < n < N (N can be chosen
to be infinity) and a, b are nonzero real numbers. If f satisfies (0.2) and the
values f(K) and f(K + 1) are known, then f(n) can be determined for all
K < n < N recursively by the formula

fln+1) = 517(n) = af(n— 1), (03)
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Conversely, if ug,u; are any real numbers we can find a solution to (0.2)
satisfying f(K) = ug, f(K + 1) = u; by defining f(n) recursively as in (0.3).
Also, we note that the set of functions satisfying (0.2) is a vector space, i.e., if
f1, fo satisfy (0.2) then so does ¢; f1 + ¢2 f2, where ¢y, co are any real numbers.
This vector space has dimension 2; in fact, a basis for the vector space is given
by {f1, f2}, where f is the solution satisfying f;(K) =1, fi(K + 1) = 0 and
f2 is the solution satisfying fo(K) =0, fo(K +1) = 1. If g; and g2 are any two
linearly independent solutions, then it is a standard fact from linear algebra
that every solution is of the form

191 + Cc2g2

for constants ¢y, cs.

We now make some good guesses to find a pair of linearly independent
solutions. We will try functions of the form f(n) = o™ for some a # 0. This
is a solution for a particular « if and only if

a" =" ' +ba™", K<n<N,
i.e., if and only if
a=a+ba’
We can solve this with the quadratic formula, giving

a_l:t\/l—4ab
- 2b ’

Case I: 1 — 4ab # 0. In this case there are two distinct roots, oy, ag, and
hence the general solution is

f(n) = c1a? + cad. (0.4)

Case II: 1 — 4ab = 0. In this case we get only one solution of this type,
g1(n) = o™ = (1/2b)™. However, if we let go(n) = n(1/2b)™ we see that
a(n —1)(1/26)" ' +b(n + 1)(1/2b)"*!
(1/2)"a(n — 1)2b + b(n + 1)/(2b)]
(1/2b)"n = g2(n).

Therefore g is also a solution. It is easy to check that g;,go are linearly
independent, so every solution is of the form

f(n) = e1(1/2b)"™ + can(1/2b)".

agz2(n — 1) 4+ bga(n + 1)

Il

Example. Suppose we want to find a function f satisfying

fn) =g S0 =1)+ 3 fn+ 1), 0<n< oo,
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with f(0) =4, f(1) = 3. Plugging in we get,

3+v5
a = 4 .

The general solution is

fn) = e (3““4\/5) e (*f) .

If we plug in the initial conditions, we get

4 = f(0) =¢; + co,

3+v5  3-5
+ Co .

3:f(1)261 1 1

Solving gives ¢; = 2, ¢ = 2, and hence
n n
34+ Vo 3—-v5
f(n):2< f) +2( f) |

We have seen that the values of f(K) and f(K + 1) uniquely determine
the solution to (0.2). Sometimes, one is given the boundary values f(K) and
f(N). These boundary value problems can be solved in the same way—write
down the general solution and solve for the constants. For example, suppose
we want the function f which satisfies

f(n)=2f(n-1)- f(n+1), 0<n<10,
with f(0) =0, f(10) = 1. We write down the general solution
f(n) =c11™ + co(—2)™.
Plugging in the initial conditions gives

f0)=0=c+ec

f(lO) =1l=c + CQ(—2)n,

and Cl = —Cy = 1/(1 - 210).
In the study of random walks, the difference equations

fn)=Q0=p)f(n=1)+pf(n+1), pe(0,1)
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arise. If p # 1/2, we obtain two roots a; = 1, a2 = (1 — p)/p, and hence the
general solution is

1 _ n
fn) =1+ (—p) . (05)
p
If p=1/2, @ = 1 is a repeated root so we get the general solution

f(n) =c1+can. (0.6)

What we have analyzed are second-order linear difference equations. The
general kth-order homogeneous linear difference equation is of the form

fin+k)=aof(n)+arf(n+ 1)+ - +ar1f(n+k—1). (0.7)

Suppose we wish to find a function satisfying (0.7) for n > 0. It suffices to
give the values f(0),..., f(k — 1), for then f(n),n > k can be determined
recursively. Again we look for solutions of the form f(n) = a™. Such an f is
a solution if and only if

af = a t+taa+ -+ ak_lak“l.
As before, if there are k distinct roots of this equation, we get k linearly
independent solutions. If a certain « is a root with multiplicity j, one can
check in fact that

a™, na,n%a", - 0t o

are all linearly independent solutions. In complete parallel with the case of
linear differential equations, we get k linearly independent solutions to (0.7)
and we can find all solutions by taking linearly combinations of these solutions.

0.4 Exercises

0.1 Find all functions z(¢),y(t) satisfying
() = y(t) — a(t),
y'(t) = 3x(t) — 3y(t).
Find the particular pair of functions satisfying z(0) = y(0) = 1/2.
0.2 Find the function f(n),n =0,1,...,10 that satisfies
f(n) = if(n— 1)+ gf(n+ ), n=1.2,....9,

and f(0) =0, f(1) =1.
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0.3 The Fibonacci numbers F,, are defined by F; =1, F, = 1 and for n > 2,
F, =F,_1+ F,_». Find a formula for F,, by solving the difference equation.

0.4 Find the function f(n), n =0,1,2,... that satisfies

7(0) =0,
1 1 1
fn) = 50— 1)+ S+ D)+ 5 fn+2), n>1,

lim f(n)=1.

n—oo

0.5 Find all functions f from the integers to the real numbers satisfying

fn) = %f(n 1)+ %f(n ST (0.8)

[Hint: First show that f(n) = n? satisfies (0.8). Then suppose f;(n) and fa(n)
both satisfy (0.8) and find the equation that g(n) = fa(n) — f1(n) satisfies.]

0.6 (a) Find all functions f from the real numbers to the real numbers such
that for all x,

f'(@) + f'(z) + f(z) = 0.

(b) Find all functions f from the integers to the real numbers such that for
all n,

fn+2)=—f(n) - f(n+1).






Chapter 1

Finite Markov Chains

1.1 Definitions and Examples

Consider a discrete-time stochastic process, X,,n = 0,1,2,..., where X,
takes values in the finite set S = {1,... ,N} or {0,... ,N —1}. We call the
possible values for X, the states of the system. To describe the probabilities
for such a process we need to give the values of

IP{XO :lO,Xl = il,... ,Xn = ln},

for every n and every finite sequence of states (ig, ... ,%,). Equivalently, we
could give the initial probability distribution

o(i) =P{Xo =1}, i=1,... N
and the “transition probabilities,”
Gn(in | G0y yin—1) =P{Xpn =in | Xo =10,... , Xn-1 = in-1}, (1.1)
for then

IP{XO:i07"‘ 7Xn='Ln}=

d(i0)q1 (41 | i0) g2(ia | i0,%1) -+ gnlin | i0, .. yin—1). (1.2)

In this chapter we consider a special class of such processes, those that
satisfy the Markov property. The Markov property states that to make pre-
dictions of the behavior of a system in the future, it suffices to consider only
the present state of the system and not the past history. That is to say,
the state of the system is important but not how it arrived at that state.
Mathematically, we can write this as

P{Xn =1in | Xo=10,...,Xn-1= in—l} = IFD{){n =1in | Xn-1= in—1}~

We will also make the assumption that the transition probabilities do not de-
pend on time. This is called time homogeneity. A time-homogeneous Markov
chain is a process such that

P{Xn =in I Xo=10,...,Xpn-1= in—l} = p(in—lqin%
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for some function p : S x S — [0,1]. Unless explicitly stated otherwise in this
book, when we say Markov chain we will mean time-homogeneous Markov
chain. To give the probabilities for a Markov chain, we need to give an initial
probability distribution ¢(i) = P{X, = i}, and the transition probabilities
p(%, ), for then, by (1.2),

IFD{XO = io, e ,Xn = Zn} = ¢(Zo)p(20,21)p(21,22) e p(Zn_l,Zn) (13)

The transition matriz P for the Markov chain is the N x N matrix whose
(1,7) entry Py; is p(4, 7). The matrix P is a stochastic matriz, i.e.,

N
Y Pj=1 1<i<N, (1.5)
J=1

Any matrix satisfying (1.4) and (1.5) can be the transition matrix for a Markov
chain.

Example 1. Two-state Markov chain. Let us give a simple model for
the state of a phone where X,, = 0 means that the phone is free at time n
and X,, = 1 means that the phone is busy. We assume that during each time
interval there is a probability p that a call comes in (for ease we will assume
that no more than one call comes in during any particular time interval). If
the phone is busy during that period, the incoming call does not get through.
We also assume that if the phone is busy during a time interval, there is a
probability g that it will be free during the next interval. Our model gives a
Markov chain with state space S = {0,1} and matrix

0 1
)
1l g l-gq qg l-gq
This matrix give the general form for a transition matrix of a two-state Markov
chain. In order to specify the matrix one only needs to give the values of p
and q. We have written the matrix in two different ways. The first way labels

the states and the latter way does not. We will use both notations in this
chapter.

Example 2. Simple Queueing Model. We modify the previous example
by assuming that the phone system can put one caller on hold. Hence at any
time the number of callers in the system is in the set S = {0,1,2}. Again,
any call will be completed during a time interval with probability ¢ and a new
caller will come in with probability p, unless the system is already full. To
model this we set

p(ovo) =1 iy 2 p(()? 1) =D, p(032) = 07
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since a caller comes in with probability p (again we are assuming only one
caller arrives during any time period). Also,

p(270) = 0, p(27 1) =q, p(212) =1- q,

since no new callers may arrive if there are two callers in the system, and
both calls may not end simultaneously. If there is exactly one caller in the
system, it is a little more complicated. The state of the system goes from 1
to 0 if the current call is completed and no new callers enter the system, i.e.,
p(1,0) = ¢(1 — p). Similarly, the state goes from 1 to 2 if the current call is
not completed but a new call arrives, i.e., p(1,2) = p(1 — q). Since the rows
must add to 1, p(1,1) =1 — ¢q(1 — p) — p(1 — q) and hence

0 1 2
o] 1—p P 0
P=1|g(1-p)1-q(1-p)—p(1-gq)p(l-q)
2 0 q 1—¢q

Transition probabilities are often represented by directed graphs, where the
vertices of the graphs are the states and the arrows represent the transitions.
The above matrix can be represented graphically as follows:

q(1-p) q

@ OO

gq1-p)—p(l—q) 1-¢q

Example 3. Random Walk with Reflecting Boundary. Consider a

“random walker” moving along the sites {0,1,... ,N}.
*r—o—0 - *—ae
0 1 2 N-1 N

At each time step the walker moves one step, to the right with probability p
and to the left with probability 1 — p. If the walker is at one of the boundary
points {0, N}, the walker moves with probability 1 toward the inside of the
interval. The transition matrix P for this Markov chain is given by

p(i,i+1)=p, p(i,i—1)=1—-p, 0<i<N,
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p(071)=1v p(N,N—l)Zl,

with p(i,j) = 0 for other values of i,5. If p = 1/2, we call this symmetric
or unbiased random walk with reflecting boundaries. If p # 1/2 it is called
biased random walk. Sometimes it is more convenient to consider partially
reflecting boundaries where the walker at the boundary moves the same as
on the inside except that if the walker tries to leave the states {0,..., N} he
runs into a wall and goes nowhere. This corresponds to boundary conditions

p(0,0) =1-p, p(0,1)=p, p(N,N—-1)=1-p, p(N,N)=p.

Example 4. Random Walk with Absorbing Boundaries. This chain
is like the previous example except that when the walker reaches 0 or N, the
walker stays there forever. The transition matrix is given by

p(i,i+1)=p, p(i,i—1)=1—-p, 0<i<N,

p(0,0) =1, p(N,N)=1.

(We adopt the convention from here on that if p(i,7) is not specified for a
particular 7, j then it is assumed to be 0.)

Example 5. Simple Random Walk on a Graph. A (finite, simple,
undirected) graph is a finite collection of vertices V' and a collection of edges
E where each edge connects two different vertices and any two vertices are
connected by at most one edge. We write v; ~ vy if vertices v; and ve are
adjacent, i.e., an edge connects the two vertices.

Consider the Markov chain whose states are the vertices of the graph. At
each time interval, the chain chooses a new state randomly from among the
states adjacent to the current state. The transition matrix for this chain is
given by

p(vi,vj) = 1/d(vi), v; ~v;,

where d(v;) is the number of vertices adjacent to v; [if d(v;) = 0, we let
p(v;,v;) = 1]. This chain is called simple random walk on the graph. Sym-
metric random walk (p = 1/2) with reflecting boundaries as in Example 3 is
a particular example of a simple random walk on a graph.
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Given a transition matrix P and an initial probability distribution ¢, how
can we determine the probability that the Markov chain will be in a certain
state i at a given time n? Define the n-step probabilities p, (7, ) by

Pn(i,5) = P{Xn = j | Xo = i} = P{Xpnyp =5 | Xp =i}

(the latter equality holds because of time homogeneity). Then

P{X, =j} = ¢(i)P{X, =3 | Xo =i}. (1.6)

i€S

We will now show that the n-step transition probability p,(i,7) is in fact the
(i,7) entry in the matrix P™. To see this, we first note that this is trivially
true for n = 1. Assume it is true for a given n. Then,

P{Xn1=j | Xo=i} =Y P{Xn=k|Xo=i}P{Xp41 =j| Xn=k}
kesS

= > pali, k)p(k, ).

keS

But if p,, (i, k) is the (i, k) entry of P™, the last sum is exactly the (i, ) entry
of P"P = Pntl,
An initial probability distribution can be given by a vector

do = (¢o(1),... ,d0(N)).

[We will denote the vector (v(1),...,v(N)) by 0. We will use the same no-
tation whether ¥ is to be considered a row vector or a column vector. For
example, we can write either 7P, or P although ¥ is a row vector in the first
case and a column vector in the second.] If ¢o is given, the distribution at
time n, ¢, (i) = P{X,, = i} is given by

(Z_ﬁn = (Z_SOPn'

Example 6. Consider Example 1 and assume the phone is free at time 0.
Assume p=1/4 and ¢ = 1/6. Let n = 6. Then

po- [Vadle] = [t ot

If the phone is free at time 0, ¢g = (1,0). If we want to know the probability
that the phone is busy at time 6 given that it was free at time 0, we compute

(¢oP%)(1) = .576.
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1.2 Large-Time Behavior and Invariant Probability

Understanding the large-time behavior of a Markov chain boils down to un-
derstanding the behavior of P™ for large n values. Let us start by considering
a particular example,

P= Vo)

Taking powers of this matrix is easy (with a computer) and one can quickly

see that
4.6
n ~
it

for large n, i.e., a limit matrix

M= lim P"
n—oo

exists and the rows of II are identical. If ¥ is any probability vector [we say
a vector o = (v(1),...,v(N)) is a probability vector if the components are
nonnegative and sum to 1], then

lim 9P" = 7,

n—oo
where T = (2/5,3/5) is one of the rows of II. For another example, consider
Example 2 of Section 1.1 with p = 1/4,q = 1/6,

3/41/4 0
P=|1/82/35/24]. (1.7)
0 1/6 5/6

We see the same phenomenon. In this case for large n,

.182 .364 .455 W
P" ~ |.182.364 455 | = |7 |,
182 .364 .455 =

where 7 = (2/11,4/11,5/11) and hence for every probability vector 7,

lim oP" = 7.
n—0o0
At any large time, the probability that the phone has no callers is about
7(0) = 2/11, regardless of what the state of the system was at time 0.
Suppose 7 is a limiting probability vector, i.e., for some initial probability
vector v,

7 = lim 9P".
n—oo
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Then

7= lim oP"! = ( lim 9P™)P = 7P.

n—oo n—oo

We call a probability vector & an invariant probability distribution for P if
7 =aP. (1.8)

Such a 7 is also called a stationary, equilibrium, or steady-state probability
distribution. Note that an invariant probability vector is a left eigenvector of
P with eigenvalue 1.

There are three natural questions to ask about invariant probability distri-
butions for stochastic matrices:

1) Does every stochastic matrix P have an invariant probability distribution
w7

2) Is the invariant probability distribution unique?

3) When can we conclude that

T

T
lim P*"=| . |,
n—oo .

T

and hence that for all initial probability distributions o,

lim 9P"™ = #?
n—o0

Let us start by considering the two-state Markov chain with
e[l
qg l-gq

where 0 < p,q < 1. This matrix has eigenvalues 1 and 1 — p — q. We can
diagonalize P,

D =Q 'PQ,
where

a=[17]. @[y v

1 0
D= [Ol—p—q]'

The columns of Q are right eigenvectors of P and the rows of Q~! are left
eigenvectors. The eigenvectors are unique up to a multiplicative constant.
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We have chosen the constant in the left eigenvector for eigenvalue 1 so that
it is a probability vector. T = (¢/(p + q),p/(p + q)) is the unique invariant
probability distribution for P. Once P is diagonalized it is easy to raise P to
powers,

Pnz(QDq—l)n
:QDnQ—l
1 0 _
:Q[oa—p—q)"]Q 1
_ [[q+p(1—p—q)"]/(p+q) [p—p(l—p—q)"]/(p+q)]
lg-q1-p—@)"l/(p+q) [p+e1-p-q)"]/(p+q)|"

Since |1 — p — ¢q| < 1, we see that

e[ o o) - 7]

n—0o0

The key to the computation of the limit is the fact that the second eigenvalue
1—p—q has absolute value less than 1 and so the dominant contribution to P"
comes from the eigenvector with eigenvalue 1, i.e., the invariant probability
distribution.

Suppose P is any stochastic matrix. It is easy to check that the vector
1=(1,1,---,1) is a right eigenvector with eigenvalue 1. Hence at least one
left eigenvector for eigenvalue 1 exists. Suppose we can show that:

The left eigenvector can be chosen to have all nonnegative entries, (1.9)

The eigenvalue 1 is simple and all other eigenvalues
have absolute value less than 1. (1.10)

Then we can show that essentially the same thing happens as in the two-state
case. It is not always true that we can diagonalize P; however, we can do
well enough using a Jordon decomposition (consult a text in linear algebra
for details): there exists a matrix Q such that

D =Q 'PQ,

where the first row of Q! is the unique invariant probability vector 7; the
first column of Q contains all 1s. The matrix D is not necessarily diagonal
but it does have the form
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where M™ — 0. Then in the same way as the two-state example,
10---0

0o |Q'=

=l

lim P" = lim QD"Q!'=Q
n—oo

n—0o0

b= [

This leads us to ask which matrices satisfy (1.9) and (1.10). The Perron-
Frobenius Theorem from linear algebra gives one large class of matrices for
which this is true. Suppose that P is a stochastic matrix such that all of
the entries are strictly positive. Then the Perron-Frobenius Theorem implies
that: 1 is a simple eigenvalue for P; the left eigenvector of 1 can be chosen
to have all positive entries (and hence can be made into a probability vector
by multiplying by an appropriate constant); and all the other eigenvalues
have absolute value strictly less than 1. We sketch a proof of this theorem in
Exercise 1.20.

While this includes a large number of matrices, it does not cover all stochas-
tic matrices with the appropriate limit behavior. For example, consider the
matrix P in (1.7). Although P does not have all positive entries, note that

594 .354 .052
P2 = |.177 .510 .312 | ,
.021 .250 .729

and hence P? satisfies the conditions of the theorem. Therefore, 1 is a simple
eigenvalue for P2 with invariant probability 7 and the other eigenvalues of P?
have absolute value strictly less than 1. Since the eigenvalues for P2 are the
squares of the eigenvalues of P, and eigenvectors of P are eigenvectors of P2,
we see that P also satisfies (1.9) and (1.10). We then get a general rule.

Fact. If P is a stochastic matrix such that for some n, P™ has all entries
strictly positive, then P satisfies (1.9) and (1.10).

In the next section we classify all stochastic matrices P that have the prop-
erty that P™ has all positive entries for some n.

1.3 Classification of States

In this section we investigate under what conditions on a stochastic matrix
P we can conclude that P™ has all positive entries for some sufficiently large
n. We start by considering some examples where this is not true.
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Example 1. Simple random walk with reflecting boundary on {0, ... ,4}. In
this case,

o 1 2 3 4
01 0 0 0
1/2 0 1/2 0 0
0 1/2 0 1/2 0
0 0 1/2 0 1/2
00 0 1 0

"
Il
BWw N = O

If one takes powers of this matrix, one quickly sees that P™ looks different
depending on whether n is even or odd. For large n, if n is even,

.25 0 .50 0 .25
0 .50 0 .50 0O
P"=~ |.25 0 .50 0 .25],
0 .50 0 .50 0
25 0 .50 0 .25
whereas if n is odd,
0 .50 0 .50 0
.25 0 .50 0 .25

PP~ | 0 .50 0 .50 0
25 0 .50 0 .25
0 .50 0 .50 0

It is easy to see why there should be many zeroes in P™. At each step, the
random walker moves from an “even” step to an “odd” step or vice versa.
If the walker starts on an even site, then after an even number of steps the
walker will be on an even site, i.e., p,(%,j) = 0if 7 is even, j is odd, n is even.
Similarly, after an odd number of steps, a walker who started on an even point
will be at an odd point. In this example we say that P has period 2.

Example 2. Simple random walk with absorbing boundary on {0,...,4}.
Here,

"o
Il
W N = O
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If n is large, we see that

10000
75000 .25
P"~ [.50000 .50
.25000.75
00001

In this case the random walker eventually gets to 0 or 4 and then stays at
that state forever. Look at the second row and observe that p,(1,0) — 3/4
and p,(1,4) — 1/4. This implies that the probability that a random walker
starting at 1 will eventually stick at 0 is 3/4, whereas with probability 1/4
she eventually sticks at 4. We will call states such as 1,2, 3 transient states of
the Markov chain.

Example 3. Suppose S = {1,2,3,4,5} and

1 2 3 4 5
1/21/2 0 0 0
1/65/6 0 0 0
0 0 3/41/4 0
0 0 1/82/35/24
0 0 0 1/6 5/6

"o
Il
G W N =

For large n,

2575 0 0 O
2575 0 0 O
P*~ | 0 0 .182.364 .455
0 0 .182.364 .455
0 0 .182.364 .455

In this case the chain splits into two smaller, noninteracting chains: a chain
with state space {1,2} and a chain with state space {3,4,5}. Each “subchain”
converges to an equilibrium distribution, but one cannot change from a state
in {1,2} to a state in {3,4,5}. We call such a system a reducible Markov
chain.

The main goal of this section is to show that the above examples illustrate
all the ways that a Markov chain can fail to satisfy (1.9) and (1.10).

1.3.1 Reducibility

We say two states i and j of a Markov chain communicate with each other,
written ¢ « 7, if there exist m,n > 0 such that p,,(i,5) > 0 and p,(j,7) > 0.
In other words, two states communicate if and only if each state has a positive
probability of eventually being reached by a chain starting in the other state.
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The relation < is an equivalence relation on the state space, i.e., it is: reflexive,
i < 1 [since po(%,7) = 1 > 0]; symmetric, i < j implies that j «— 7 (this is
immediate from the definition); and transitive, i < j and j « k imply i < k.
To see that transitivity holds, note that if p,,,(¢,7) > 0 and pnm,(j,k) > 0
then

Pmy+my (5 k) = P{ X, 4m, = k | Xo =i}
> P{Xm1+m2 =k, Xm, =J | Xo = Z}
=P{Xm, =j | Xo =i} P{Xm,1m, = k| Xm, = J}
= Pm, (4, §) Pm, (4, k) > 0,

and similarly p,, (4,7) > 0,pn,(k,j) > 0 imply pp, +n,(k,7) > 0. This equiva-
lence relation partitions the state space into disjoint sets called communication
classes. For example, in Example 3 of this section there are two communica-
tion classes {1,2} and {3,4,5}.

If there is only one communication class, i.e., if for all i, j there exists an
n = n(i,j) with p,(i,7) > 0, then the chain is called irreducible. Any matrix
satisfying (1.9) and (1.10) is irreducible. However, one can also check that
Example 1 of this section is also irreducible. Example 2 has three communica-
tion classes, {0}, {1,2,3}, and {4}. In this example, if the chain starts in the
class {1,2, 3}, then with probability 1 it eventually leaves this class and never
returns. Classes with this property are called transient classes and the states
are called transient states. Other classes are called recurrent classes with re-
current states. A Markov chain starting in a recurrent class never leaves that
class.

Suppose P is the matrix for a reducible Markov chain with recurrent com-
munication classes Ry,..., R, and transient classes T1,...,Ts. It is easy to
see that there must be at least one recurrent class. For each recurrent class
R, the submatrix of P obtained from considering only the rows and columns
for states in R is a stochastic matrix. Hence we can write P in the following
form (after, perhaps, reordering the states):

P,
Py 0
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where Py, is the matrix associated with Rj. Then,

P" =

Sn Q"

for some matrix S,. To analyze the large time behavior of the Markov chain
on the class Ry we need only consider the matrix P. We discuss the behavior
of Q™ in Section 1.5.

1.3.2 Periodicity

Suppose that P is the matrix for an irreducible Markov chain (if P is
reducible we can consider separately each of the recurrent communication
classes). We define the period of a state i, d = d(i), to be the greatest common
divisor of

Ji :={n>0:p,(3,i) > 0}.

In Example 1 of this section, the period of each state is 2; in fact, in this case
pon(i,1) > 0 and pan41(Z,7) = 0 for all n, 3.

Suppose J is any nonempty subset of the nonnegative integers that is closed
under addition, i.e., m,n € J = m+n € J. An example of such a J is the set
Ji since prmin(i,1) > pm(i, 0)pn(i,4). Let d be the greatest common divisor
of the elements of J. Then J C {0,d,2d,...}. Moreover, it can be shown
(Exercise 1.21) that J must contain all but a finite number of the elements of
{0,d,2d,...}, i.e., there is some M such that md € J for all m > M. Hence
J; contains md for all m greater than some M = M,. If j is another state
and m, n are such that p,,(i,7) > 0,pn(j,%) > 0, then m+n € J;,m+n € J;.
Hence m + n = kd for some integer k. Also, if I € Jj;, then

pm+n+l(i7j) 2 Pm(%])l’l(]d)l’n(]vz) > 07

and so d divides [. We have just shown that if d divides every element of J;
then it divides every element of J;. From this we see that all states have the
same period and hence we can talk about the period of P. (We have used the
fact that P is irreducible. If P is reducible, it is possible for states in different
communication classes to have different periods.)

Example 4. Consider simple random walk on a graph (see Example 5, Sec-
tion 1.1). The chain is irreducible if and only if the graph is connected, i.e.,
if any two vertices can be connected by a path of edges in the graph. Every
vertex in a connected graph (with at least two vertices) is adjacent to at least
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one other point. If v ~ w then pa(v,v) > p1(v,w)pi(w,v) > 0. Therefore,
the period is either 1 or 2. It is easy to see that the period is 2 if and only if
the graph is bipartite, i.e, if and only if the vertices can be partitioned into
two disjoint sets Vi, V5 such that all edges of the graph connect one vertex
of V1 and one vertex V5. Note that symmetric random walk with reflecting
boundaries gives an example of simple random walk on a bipartite graph.

1.3.3 Irreducible, aperiodic chains

We call an irreducible matrix P aperiodic if d = 1. What we will show
now is the following: if P is irreducible and aperiodic, then there exists an
M > 0 such that for all n > M, P™ has all entries strictly positive. To see
this, take any ¢, j. Since P is irreducible there exists some m(i, j) such that
Pm(i,j)(i,7) > 0. Moreover, since P is aperiodic, there exists some M (i) such
that for all n > M (i), pn(4,¢) > 0. Hence for all n > M(3),

pn+m(i,j)(iaj) 2> pn(ivi)pm(i,j)(ivj) > 0.

Let M be the maximum value of M (i) + m(s,j) over all pairs (7,7) (the
maximum exists since the state space is finite). Then p,(i,7) > 0 for all
n > M and all i,j. Using the rule at the end of Section 1.2 we can now
summarize with the following theorem.

Theorem. IfP is the transition matriz for an irreducible, aperiodic Markov
chain, then there exists a unique invariant probability vector T satisfying

7P = 7.
If ¢ is any initial probability vector,

lim ¢P" = 7.

n—0o0

Moreover, n(i) > 0 for each i.

1.3.4 Reducible or periodic chains

We finish this section by discussing how P™ behaves when P is not irre-
ducible and aperiodic. First, assume P is reducible with recurrent classes
Ry,..., R, and transient classes T1,...,T,. Each recurrent class acts as a
small Markov chain; hence, there exists r different invariant probability vec-
tors 7!, ... ,@" with #¥ concentrated on Ry (7*(i) = 0 if i ¢ Rx). In other
words, the eigenvalue 1 has multiplicity » with one eigenvector for each recur-
rent class. Assume, for ease, that the submatrix Py for each recurrent class
is aperiodic. Then if i € Ry,

Jim p (i, 5) = *(3), J € B,
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Pn(i,4) =0, j & Ry.

If 7 is any transient state, then the chain starting at 7 eventually ends up in a
recurrent state. This means that for each transient state 7,

lim p,(¢,7) =0.
n—00

Let ak(i),k = 1,...,r be the probability that the chain starting in state ¢
eventually ends up in recurrent class Ry [in Section 1.5 we will discuss how
to calculate ai(i)]. Once the chain reaches a state in Ry it will settle down
to the equilibrium distribution on Ry. From this we see that if j € Ry,

lim p (i.3) = (i) (7).
n—oo
If ¢ is an initial probability vector,
lim ¢P"
n—oo
exists but depends on ¢.

Suppose now that P is irreducible but has period d > 1. In this case the
state space splits nicely into d sets, Aj,...Aq, such that the chain always
moves from A; to A;11 (or Ag to Ay). To illustrate the large-time behavior
of P™, we will consider Example 1 of this section which has period 2. Let

01 0 0 0
1/2 0 1/2 0 0
P=|01/2 0 1/2 0
0 0 1/2 0 1/2
00 0 1 0

The eigenvalues for P are 1,—1,0,1/v/2, —1/v/2. The eigenvalue 1 is simple
and there is a unique invariant probability 7 = (1/8,1/4,1/4,1/4,1/8). How-
ever, when powers of P are taken the eigenvector for —1 becomes important
as well as 7. We can diagonalize P,

D =Q 'PQ,
where

1-1/2 1/4 -1 +/2/4
11/2 0 —v2/2 -1/4
Q=|1-1/2-1/4 0 0 ,
112 0 +2/2 1/4
1-1/2 1/4 1 —/2/4

1/8 1/4 1/4 1/4 1/8
~1/4 1/2 -1/2 1/2 —1/4
Q'l=] 1 0 -2 0 1
—1/4 —2/4 0 V2/4 1/4
V2/2 -1 0 1 —2/2
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100 0 0
0-10 0 0

D=|000 0 0
0001/v2 0
000 0 —1/V2

We then see that for P", the eigenvectors for the three eigenvalues with ab-
solute value less than 1 become irrelevant and for large n

1/81/41/41/41/8
1/81/41/41/41/8
1/81/41/41/41/8 | +
1/81/41/41/41/8
1/81/41/41/41/8

P’Il

Q

1/8 —1/4 1/4 —1/4 1/8
~1/8 1/4 —1/4 1/4 —1/8
(=)™ | 1/8 —1/4 1/4 —1/4 1/8
~1/8 1/4 —1/4 1/4 —1/8
1/8 —1/4 1/4 —1/4 1/8

The asymptotic value for P™ varies depending on whether n is even or odd.
In this case the invariant probability at a state ¢, 7(4), does not represent the
limit of p,(j,7). However, it does represent the average amount of time that
is spent in site 7. In fact, one can check that for large n, the average of p,(7,1)
and pn11(J,%) approaches m(i) for each initial state j,

7(i) = lim_ 2 {pa(ii) +pora( )

In general, if P is irreducible with period d, P will have d eigenvalues with
absolute value 1, the d complex numbers z with z¢ = 1. Each is simple;
in particular, the eigenvalue 1 is simple and there exists a unique invariant
probability 7. Given any initial probability distribution ¢, for large n, ¢P™
will cycle through d different distributions, but they will average to 7,

lim_ = [§P" 4y GPH = 7

n—0o0

1.4 Return Times

Let X, be an irreducible (but perhaps periodic) Markov chain with tran-
sition matrix P. Consider the amount of time spent in state j up to and
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including time n,
n
Y(jn) =Y I{Xm=j}
m=0

Here we write I to denote the “indicator function” of an event, i.e., the random
variable which equals 1 if the event occurs and 0 otherwise. If 7 denotes the
invariant probability distribution for P, then it follows from the results of the
previous sections that

n

Y P{Xm =5 | Xo =i}

m=0

1
lim 1]E(Y(j, n)| Xo=1) = lim

n—oo 1 + n—oo 7+ 1
=7(j),

i.e., m(j) represents the fraction of time that the chain spends in state j. In
this section we relate 7(j) to the first return time to the state j.

Fix a state ¢ and assume that Xy = i. Let T be the first time after 0 that
the Markov chain is in state 1,

T =min{n >1: X, =1}

Since the chain is irreducible, we know that T" < oo with probability 1. In
fact (see Exercise 1.7) it is not too difficult to show that E (T') < oo.

Consider the time until the kth return to the state 4. This time is given by a
sum of independent random variables, T} +- - - + T}, each with the distribution
of T. Here, T, denotes the time between the (m — 1)st and mth return. For
k large, the law of large numbers tells us that

1
k
i.e., there are about k visits to the state ¢ in kE (T) steps of the chain. But

we have already seen that in n steps we expect about nw(7) visits to the state
i. Hence setting n = kE (T') we get the relation

1
E(T) = et (1.11)
This says that the expected number of steps to return to 7, assuming that the
chain starts at 7, is given by the reciprocal of the invariant probability. The
above argument is, of course, not completely rigorous, but it does not take
too much work to supply the details to prove that (1.11) always holds. See
Exercise 1.15 for another derivation of (1.11).

(Th +--- Ti;) = E(T),

Example. Consider the two-state Markov chain with S = {0,1} and

0 1

_o|l-p p
P_l[ q l—q]’ 0<pg<l.
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Assume the chain starts in state 0 and let T be the return time to 0. In
Section 1.2, we showed that T = (¢/(p + q),p/(p + q)) and hence

E(T) = %0) - ”—;r—q (1.12)

In this example we can write down the distribution for T" explicitly and verify
(1.12). Forn > 1,

P(T>n}=P{X;=1,...,X,_1=1|Xo=0}=p(1—¢)" 2

If Y is any random variable taking values in the nonnegative integers,

E(Y)=) nP{Y =n}=)Y Y P{Y =n}

n=1k=1

:iiP{Y:n}:iP{YZk}. (1.13)
k=1

=1n=k
Therefore,
oo o0
E(T) =Y nP{T =n}=> P{T >n}

n=1 n=1

oo
+
=1+ p(l-¢"*= %I

n=2

It should be pointed out that (1.11) only gives the expected value of the
random variable T and says nothing else about its distribution. In general,
one can say very little else about the distribution of 7" given only the invariant
probability 7. To illustrate this, consider the two-state example above with
p = g so that E(T) = 2. If p is close to 1, then T = 2 most of the time
and Var(T) is small. If p is close to 0, then T = 1 most of the time, but
occasionally T takes on a very high value. In this case, Var(T) is large.

In the next section, we discuss how to compute the expected number of
steps from ¢ to 7 when i # j.

1.5 Transient States

Let P be the transition matrix for a Markov chain X,,. Recall that a state
1 is called transient if with probability 1 the chain visits 4 only a finite number
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of times. Suppose P has some transient states and let Q be the submatrix of
P which includes only the rows and columns for the transient states. Hence
(after rearranging the order of the states) we can write

-] =[]

As an example, we consider the random walk with absorbing boundaries (Ex-
ample 2, Section 1.3). We order the state space S = {0,4,1,2,3} so that we
can write

0 4 1 2 3
ol 1 0 0 0 O 1 2 3
4] 0 1 ' 0 0 0O 1l 0 1/2 0
P=1({1/2 00 1/2 0 |, Q=2|1/2 0 1/2{. (1.14)
21 0 0 |1/2 0 1/2 3] 0 1/2 0
3] 0 1/21 0 1/2 0

The matrix Q is a substochastic matriz, i.e., a matrix with nonnegative
entries whose row sums are less than or equal to 1. Since the states represented
by Q are transient, Q™ — 0. This implies that all of the eigenvalues of Q
have absolute values strictly less than 1. Hence, I — Q is an invertible matrix
and there is no problem in defining the matrix

M=(I-Q) "

Let i be a transient state and consider Y;, the total number of visits to ¢,
oo
Yo=Y I{X,=i}.
n=0

Since ¢ is transient, Y; < oo with probability 1. Suppose Xo = j, where j is
another transient state. Then,

E(Y; | Xo=j)=E |> H{Xp=i}| Xo=7
n=0

=Y P{X, =i| Xo = j}
=0

M

Pn(],’l)
0

n

In other words, E (Y; | Xo = j) is the (j,¢) entry of the matrix

I+P+ P+ ..
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which is the same as the (j,i) entry of the matrix I + Q + Q? +
However, a simple calculation shows that

I+Q+Q*+--)I-Q) =1,

or
I+Q+Q*+---=1I-Q)'=M.

We have just shown that the expected number of visits to i starting at j is
given by Mj;, the (j,) entry of M. If we want to compute the expected
number of steps until the chain enters a recurrent class, assuming Xo = j, we
need only sum Mj; over all transient states 1.

In the particular example (1.14),

1 2 3
1[3/211/2

M=(I-Q '=2[121
3| 1/213/2

Starting in state 1, the expected number of visits to state 3 before absorption is
1/2, and the expected total number of steps until absorption is 3/2+1+1/2 =
3.

We can also use this technique to determine the expected number of steps
that an irreducible Markov chain takes to go from one state j to another state
1. We first write the transition matrix P for the chain with i being the first
site:

P [p(gi)R}

We then change i to an absorbing site, and hence have the new matrix

~ 1/0
b [le].
Let T; be the number of steps needed to reach state i. In other words, T; is
the smallest time n such that X, = i. For any other state k let T} ; be the

number of visits to k before reaching i (if we start at state k, we include this
as one visit to k). Then,

E(T, | Xo=4)=E |Y Tix| Xo=3j| =Y My
ki k#i

In other words, M1 gives a vector whose jth component is the number of
steps starting at j until reaching .
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Example 1. Suppose P is the matrix for random walk with reflecting bound-
ary,

0 1 2 3 4

ofl 0 1 0 0 O

1/11/2 0 1/2 0 0

P=2| 0 1/2 0 1/2 0

3 0 0 1/2 0 1/2
4/ 0O 0 0 1 0
If we let i = 0, then
1 2 3 4 1234
1 0 1/2 0 0 112221
_2|1/2 0 1/2 0 T -1 22442
Q~3 0 1/2 0 1/2)° M=(1-Q) T 3(2463)°

4/ O 0 1 0 42464

MI = (7,12,15, 16).
Hence, the expected number of steps to get from 4 to 0 is 16.

We now suppose that there are at least two different recurrent classes and
ask the question: starting at a given transient state j, what is the probability
that the Markov chain eventually ends up in a particular recurrent class? In
order to answer this question, we can assume that the recurrent classes consist

of single points ry,... ,r, with p(r;, ;) = 1. If we order the states so that the
recurrent states rq,..., 7, precede the transient states tq,... ,ts, then
I|0
P= .
S|Q

Fori=1,...,s,j=1,...,k, let a(t;,r;) be the probability that the chain
starting at t; eventually ends up in recurrent state r;. We set a(r;,r;) =1
and a(r;,r;) = 0 if 1 # j. For any transient state t;,
a(t;,r;) = P{X, =rj eventually | X¢ =t;}
= Z P{X, =z | Xo = t;} P{X,, = r; eventually | X; =z}
z€S

= Zp(tivx)()‘(xvrj)'

z€S

If A is the s X k matrix with entries a(t;,r;), then the above can be written
in matrix form

A=S+QA,
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or
A=(I-Q)'S=MS.
Example 2. Consider a random walk with absorbing boundary on {0, ... ,4}.

If we order the states {0,4,1,2,3} so that the recurrent states precede the
transient states then

0 4 1 2 3

of1 0]0 0 0

Jo 1‘0 0 0

P=1[1/2 0] 0 1/2 0

2l 0 0 |1/2 0 1/2
s| 0 1/2] 0 1/2 0
0 4 1 2 3 0 4

1[1/2 0 1[3/211/2 1[3/41/4
S=2/0 0], M=2| 121/, MS=2[1/21/2
s| 0 1/2 3[1/213/2 3| 1/43/4

Hence, starting at state 1 the probability that the the walk is eventually
absorbed at state 0 is 3/4.

Example 3. Gambler’s Ruin. Consider the random walk with absorbing
boundary on {0,...,N}. Let a(j) = a(j,N) be the probability that the
walker starting at state j eventually ends up absorbed in state N. Clearly,
a(0) = 0,a(N) = 1. For 0 < j < N, we can consider one step as above and
note that

a(j) =(1=p)a(i-1)+pa(i+1) (1.15)

This gives us N — 1 linear equations in N — 1 unknowns, a(1),--- ,a(N —1).
To find the solution, we need to know how to solve linear difference equations.
By (0.5) and (0.6), the general solution of (1.15) is

_ J
ai)=eita (L) i

a(j)=c+e2j, p=1/2.

The boundary conditions a(0) = 0,a(N) = 1 allow us to determine the
constants ¢y, ¢2, SO we get
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o) = L. p=1/2. (1.16)
N?
Note that if p < 1/2, then for any fixed j,
Jim o) =0

This says that if a gambler with fixed resources j plays a fair (or unfair) game
in which the gambler wins or loses one unit with each play, then the chance
that a gambler will beat a house with very large resources N is very small.
However, if p > 1/2,

. . 1-p\’
Nll_Ig()()z(]) =1- (T) > 0.

This says that there is a positive chance that the gambler playing a game in
the gambler’s favor will never lose all the resources and will be able to play
forever.

Suppose p = 1/2, and let T be the time it takes for the random walk to
reach 0 or N, and let

G(j) =G@,N) =E[T | Xo = j].
Clearly, G(0) = 0, G(N) = 0 and by considering one step we can see that
1 1
G(j):1+§G(j—1)+§G(j+1), j=1,...,n—1 (1.17)

This is an example of an inhomogeneous linear difference equation. One solu-
tion of the equation is given by Go(j) = j°. Also, if G1, Gy are two solutions
to (1.17), we can see that ¢ = G — G satisfies the homogeneous equation

) 1 . 1 . .

9 =590 -D+59G+1), j=1...,n-1

Using this, we can see that all solutions of (1.17) are of the form
G(j) =7 +c1+caj.

Plugging in the boundary conditions G(0) = G(N) = 0, allows us to determine
the constants ¢, co, and we get

ET| Xo=j]=7(N-J). (1.18)

1.6 Examples

Simple Random Walk on a Graph (Example 5, Section 1.1). Assume
the graph is connected so that the walk is irreducible. Let e denote the total
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number of edges in the graph and d(v) the number of edges that have v as
one of their endpoints. Since each edge has two endpoints, the sum of d(v)
over the vertices in the graph is 2e. It is easy to check that

m(v) = d(v)/2e,
is the invariant probability measure for this chain.

Simple Random Walk on a Circle. Let N > 2 be an integer. We can
consider {0,1,..., N —1} to be a “circle” by assuming that N —1 is adjacent
to 0 as well as N — 2.

o 1
°*0
SN-1
]
CUN=2

Let X,, be simple random walk on the circle. The transition probabilities
are

p(k,k—l):p(k—l,k):%, k=1,...,N—1,

1

=5

The invariant probability is the uniform distribution. Assume that Xy = 0
and let T}, denote the first time at which the number of distinct points visited
equals k. Then Ty is the first time that every point has been visited. By
definition Ty = 0, and clearly Ty = 1. We will compute r(k) = E [Ty — T)—1]
for k =3,...,N; alittle thought will show that the value depends only on k
and not on N. Note that at time T _; the chain is at a boundary point so that
one of the neighbors of X, |, has been visited and the other has not. In the
next step we will either visit the new point or we will go to an interior point.
If we go to the interior point, the random walk has to continue until it reaches
a boundary point and then we start afresh. By (1.18), the expected time that
it takes the random walk from the interior point (next to the boundary point)
to reach a boundary point is £ — 3. We therefore get the equation

p(0,N —1) = p(N - 1,0)

r(k) =1+ 5 [(k = 3) + r(B)],
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or r(k) = k — 1. Therefore,

N(N - 1)

N N
E[Tn] =1+ B[l —Tea]l=1+Y (k—1)= >

k=3 k=3

We can also ask for the distribution of X, the last point to be visited by the
chain. It turns out that the distribution of this random variable is uniform on
{1,...,N —1}. We leave the derivation of this fact to the exercises (Exercise
1.16).

Urn Model. Suppose there is an urn with N balls. Each ball is colored
either red or green. In each time period, one ball is chosen at random from
the urn and with probability 1/2 is replaced with a ball of the other color;
otherwise, the ball is returned to the urn. Let X,, denote the number of red
balls after n picks. Then X, is an irreducible Markov chain with state space
{0,...,N}. The transition matrix is given by

. N-—j o, J .. 1 ,

pU I+ 1) = =5~ pUi-1) =55 pUI=35 J7=01...,

One might guess that this chain would tend to keep the number of red balls
and green balls about the same. In fact, the invariant probability is given by

the binomial distribution
. N\__n
w(j)=1\{ . ])27".
0=(7)

It is straightforward to show that this is an invariant probability,

N
(7P)(j) = >_ w(k)p(k, )
k=0
=n(j—Dp(G —1,5) +7(5) p(5,3) + 7(G + Dp( + 1,4)

v/ NAN=G-1) . ~v/N\1 ._~( N\j+l
_o-N N 1 N
=2 (j—l) oy T (j)2+2 (j+1) 2N

oo (}) -

Hence the probability distribution in equilibrium for the number of red balls
is the same as the distribution for the number of heads in N flips of a coin.
Recall by the central limit theorem, the number of heads is N/2 with a ran-
dom fluctuation which is of order v/N. We could have guessed the invariant
distribution by considering the problem slightly differently: suppose we al-
ways keep the same N balls, but when a ball is chosen we paint it the other
color with probability 1/2. Then in the long run, we would expect the colors
of the N balls to become independent with each ball having probability 1/2
of being red.
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Cell Genetics. Consider the following Markov chain which models repro-
duction of cells. Suppose each cell contains N particles each of either one of
two types, I or II. Let j be the number of particles of type I. In reproduction,
we assume that the cell duplicates itself and then splits, randomly distribut-
ing the particles. After duplication, the cell has 2j particles of type I and
2(N — j) particles of type II. It then selects N of these 2N particles for the
next cell. By using the hypergeometric distribution we see that this gives rise

to transition probabilities
Hlew)
N —
i, k) = k k .

p(J, 5N
(¥)
This Markov chain has two absorbing states, 0 and N. Eventually all cells
will have only particles of type I or of type II.
Suppose we start with a large number of cells each with j particles of type
I. After a long time the population will be full of cells all with one type of
particle. What fraction of these will be all type I? Since the fraction of type I
particles does not change in this procedure we would expect that the fraction
would be j/N. In other words, if we let a(j) be the probability that the
Markov chain starting in state j is eventually absorbed in state N, then we
expect that

For 1 < j < N —1 we can, in fact, verify that this choice of a(j) satisfies

N

a(j) = > p(G k) alk),

k=0
and hence gives the absorption probabilities.

Card Shuffling. Consider a deck of cards numbered 1,...,n. At each
time we will shuffle the cards by drawing a card at random and placing it at
the top of the deck. This can be thought of as a Markov chain on S, the
set of permutations of n elements. If A denotes any permutation (one-to-one
correspondence of {1,... ,n} with itself), and v; denotes the permutation cor-
responding to moving the jth card to the top of the deck, then the transition
probabilities for this chain are given by

1 .
p(A vjA) = o J= 1,...,n.

This chain is irreducible and aperiodic. It is easy to verify that the unique
invariant probability is the uniform measure on S,,, the measure that assigns
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probability 1/n! to each permutation. Therefore, if we start with any ordering
of the cards, after enough moves of this kind the deck will be well shuffled.

A much harder question which we will not discuss in this book is how many
such moves are “enough” so the deck of cards is shuffled. Other questions,
such as the expected number of moves from a given permutation to another
given permutation, theoretically can be answered by the methods described in
this chapter yet cannot be answered from a practical perspective. The reason
is that the transition matrix is n! X n! which (except for small n) is too large
to do the necessary matrix operations.

1.7 Exercises

1.1 The Smiths receive the paper every morning and place it on a pile after
reading it. Each afternoon, with probability 1/3, someone takes all the papers
in the pile and puts them in the recycling bin. Also, if ever there are at least
five papers in the pile, Mr. Smith (with probability 1) takes the papers to
the bin. Consider the number of papers in the pile in the evening. Is it
reasonable to model this by a Markov chain? If so, what are the state space
and transition matrix?

1.2 Consider a Markov chain with state space {0,1} and transition matrix
0 1
p_" 1/32/3
T 1(3/41/4 |

Assuming that the chain starts in state 0 at time n = 0, what is the probability
that it is in state 1 at time n = 37

1.3 Consider a Markov chain with state space {1, 2,3} and transition matrix

P =

W R ©w

2
2.
0.
D

w N
N O

What is the probability in the long run that the chain is in state 17 Solve this

problem two different ways: 1) by raising the matrix to a high power; and 2)
by directly computing the invariant probability vector as a left eigenvector.
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1.4 Do the same for the transition matrix

P=

[SUING, IS
N e

1
2.
d.
6.

[ e

1.5 Consider the Markov chain with state space S = {0,...,5} and transi-
tion matrix

colRowume
MO RO gL -
oo mo oW
oo oco o w
vwRooo
: o

rnoRooo

R W N = O

What are the communication classes? Which ones are recurrent and which are
transient? Suppose the system starts in state 0. What is the probability that
it will be in state 0 at some large time? Answer the same question assuming
the system starts in state 5.

1.6 Assume that the chain in Exercise 1.3 starts in state 2. What is the
expected number of time intervals until the chain is in state 2 again?

1.7 Let X,, be an irreducible Markov chain on the state space {1,...,N}.
Show that there exist C < oo and p < 1 such that for any states i, j,

P{Xm #j, m=0,...,n| Xo=1i} <Cp"

Show that this implies that E (T") < oo, where T is the first time that the
Markov chain reaches the state j. (Hint: there exists a 6 > 0 such that for all
t, the probability of reaching j some time in the first N steps, starting at i,
is greater than 6. Why?)

1.8 Consider simple random walk on the graph below. (Recall that simple
random walk on a graph is the Markov chain which at each time moves to an
adjacent vertex, each adjacent vertex having the same probability.)

A B

Sp.

T e
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(a) In the long run, about what fraction of time is spent in vertex A?

(b) Suppose a walker starts in vertex A. What is the expected number of
steps until the walker returns to A?

(c) Suppose a walker starts in vertex C. What is the expected number of
visits to B before the walker reaches A?

(d) Suppose the walker starts in vertex B. What is the probability that the
walker reaches A before the walker reaches C?7

(e) Again assume the walker starts in C. What is the expected number of
steps until the walker reaches A?

1.9 Consider the Markov chain with state space {1,2,3,4,5} and matrix

1 2 3 4 5
101/32/3 0 0
20 0 0 1/43/4

P=3(00 0 1/21/2
sf10 0 0 0
510 0 0 0

(a) Is the chain irreducible?

(b) What is the period of the chain?

(c) What are p1,000(2, 1), P1,000(2,2),P1,000(2,4) (approximately)?

(d) Let T be the first return time to the state 1, starting at state 1. What
is the distribution of T" and what is E (T')? What does this say, without any
further calculation, about 7(1)?

(e) Find the invariant probability 7. Use this to find the expected return
time to state 2, starting in state 2.

1.10 Suppose X, is a Markov chain with state space {0,1,...,6} and tran-
sition probabilities

3 1
p(0,0) - Z’ P(O»l) - Zv

1 1 1
1,0) ==, p(1,1) ==, p(1,2) = -
p(1,0) 2»19(») 4»19(,) T

1 1 1
p(6,0) T p(6,5) T p(6,6) 5

and for j = 2,3,4,5,
p(J,O)=p(J,J—1)=p(J,J)=p(J,J+1)=Z-

(a) Is this chain irreducible? Is it aperiodic?
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(b) Suppose the chain has been running for a long time and we start watch-
ing the chain. What is the probability that the next three states will be 4,5,0
in that order?

(c) Suppose the chain starts in state 1. What is the probability that it
reaches state 6 before reaching state 07

(d) Suppose the chain starts in state 3. What is the expected number of
steps until the chain is in state 3 again?

(e) Suppose the chain starts in state 0. What is the expected number of
steps until the chain is in state 67

1.11 Let X, Xs,... be the successive values from independent rolls of a
standard six-sided die. Let S,, = X1 +---+ X,,. Let

Ty = min{n > 1: S, is divisible by 8},

T2 = min{n > 1: 5, — 1 is divisible by 8}.

Find E(T7) and E (T3). (Hint: consider the remainder of S,, after division by
8 as a Markov chain.)

1.12 Let X,,Y, be independent Markov chains with state space {0, 1,2}
and transition matrix

0o 1 2
o[1/21/41/4
P=1|1/41/41/2
21 0 1/21/2

Suppose Xg = 0,Yy = 2 and let
T =inf{n: X, =Y,}.

(a) Find E (7).

(b) What is P{X7 = 2}?

(c) In the long run, what percentage of the time are both chains in the same
state?

[Hint: consider the nine-state Markov chain Z,, = (X,,Y,).]

1.13 Consider the Markov chain described in Exercise 1.1.

(a) After a long time, what would be the expected number of papers in the
pile?

(b) Assume the pile starts with 0 papers. What is the expected time until
the pile will again have 0 papers?
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1.14 Let X,, be a Markov chain on state space {1,2,3,4,5} with transition
matrix

1 2 3 4 5

1[0 1/21/2 0 0

2l 0 0 0 1/54/5
P=3/ 0 0 0 2/53/5
410 0 0 0
s[1/2 0 0 0 1/2

(a) Is this chain irreducible? Is it aperiodic?

(b) Find the stationary probability vector.

(c) Suppose the chain starts in state 1. What is the expected number of
steps until it is in state 1 again?

(d) Again, suppose Xy = 1. What is the expected number of steps until
the chain is in state 47

(e) Again, suppose Xo = 1. What is the probability that the chain will
enter state 5 before it enters state 37

1.15 Let X, be an irreducible Markov chain with state space S starting at
state ¢ with transition matrix P. Let

T =min{n >0: X, =i}

be the first time that the chain returns to state i. For each state j let 7(j) be
the expected number of visits to j before returning to ¢,

r(j) = E [i 1{X, =j}] .

n=0

Note that r(i) = 1.
(a) Let 7 be the vector whose jth component is r(j). Show that 7P = 7.
(b) Show that

E(T) = r(j).
jES
(c) Conclude that E (T') = (i) ~!, where 7 denotes the invariant probability.
1.16 Consider simple random walk on the circle {0,1,... , N — 1} started at

0 as described in Section 1.6. Show that the distribution of Xz, is uniform
on{l,2,...,N -1}

1.17 The complete graph on {1,..., N} is the simple graph with these ver-
tices such that any pair of distinct points is adjacent. Let X,, denote simple
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random walk on this graph and let T" be the first time that the walk reaches
the state 1.

(a) Give the distribution of T assuming X = 1. Verify (1.11) for this chain.

(b) What is E[T | Xo = 2]?

(c) Find the expected number of steps needed until every point has been
visited at least once.

1.18 Suppose we take a standard deck of cards with 52 cards and do the
card shuffling procedure as in Section 1.6. Suppose we do one move every
second. What is the expected amount of time in years until the deck returns
to the original order?

1.19 Suppose we flip a fair coin repeatedly until we have flipped four con-
secutive heads. What is the expected number of flips that are needed? (Hint:
consider a Markov chain with state space {0,1,...,4}.)

1.20 In this exercise we outline a proof of the Perron-Frobenius Theorem
about matrices with positive entries. Let A = (a;;) be an N x N matrix with

a;; > 0 for all 4,5. For vectors & = (u},...,u") and v = (v!,...,0") we
write & > o if u* > v* for each ¢ and @ > v if u* > v* for each i. We write
0=(0,...,0).

(a) Show that if ¥ > 0 and ¥ # 0, then Av > 0.
For any vector o > 0, let g(v) be the largest A such that

Av > M.

(b) Show that g(v) > 0 for any nonzero v > 0 and if ¢ > 0 then g(cv) = g(?).
Let

a = sup g(v),

where the supremum is over all nonzero v > 0. By (b) we can consider the
supremum over all v with

ol = /()2 + -+ + @)2 = 1.

By continuity of the function g on {||v|| = 1} it can be shown that there exists
at least one vector o > 0 with g(v) = a.
(c) Show that for any o with g(?) = «,

Av = av,

i.e., U is an eigenvector with eigenvalue a. [Hint: we know by definition that
A7 > av. Assume that they are not equal and consider

A[A7 - a7],
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using (a).]

(d) Show that there is a unique ¥ > 0 with g(¥) = a and 21111 vt = 1.
[Hint: assume there were two such vectors, 71, 02, and consider g(; — U2) and
g(|v1 — U2]) where

o] = (Jo'],..., [o"]). ]

(e) Show that all the components of the v in (c) are strictly positive. [Hint:
if AU > A0 then A(A7) > AAD.|

(f) Show that if A is any other eigenvalue of A, then |A| < a. (Hint: assume
A4 = \i and consider A|a|.)

(g) Show that if B is any (N — 1) x (N — 1) submatrix of A, then all the
eigenvalues of B have absolute value strictly less than a. [Hint: since B is a
matrix with positive entries, (a)—(f) apply to B.]

(h) Consider

f(A) = det(A — AI).
Show that

N
F() == det(B; - AI),

where B; denotes the submatrix of A obtained by deleting the ith row and
ith column.
(i) Use (g) and (h) to conclude that

f'(a) >0,

and hence that « is a simple eigenvalue for A.

(j) Explain why every stochastic matrix with strictly positive entries has a
unique invariant probability with all positive components. (Apply the above
results to the transpose of the stochastic matrix.)

1.21 An elementary theorem in number theory states that if two integers
m and n are relatively prime (i.e., greatest common divisor equal to 1), then
there exist integers x and y (positive or negative) such that

mx +ny = 1.

Using this theorem show the following:
(a) If m and n are relatively prime then the set

{zm + ny : z,y positive integers }

contains all but a finite number of the positive integers.

(b) Let J be a set of nonnegative integers whose greatest common divisor
is d. Suppose also that J is closed under addition, m,n € J = m+n € J.
Then J contains all but a finite number of integers in the set {0,d,2d,...}.






Chapter 2

Countable Markov Chains

2.1 Introduction

In this chapter, we consider (time-homogeneous) Markov chains with a
countably infinite state space. A set is countably infinite if it can be put into
one-to-one correspondence with the set of nonnegative integers {0,1,2,...}.
Examples of such sets are: Z, the set of all integers; 2Z, the set of even
integers; and Z2, the set of lattice points in the plane,

7? = {(i,j) : 4,j integers}.

(The reader may wish to consider how Z? and {0,1,2,...} can be put into
one-to-one correspondence.) Not all infinite sets are countably infinite; for
example, the set of real numbers cannot be put into one-to-one correspondence
with the positive integers.

We will again let X,, denote a Markov chain. Some of that which was de-
scribed for finite-state Markov chains holds equally well in the infinite case;
however, some things become a bit trickier. We again can speak of the transi-
tion matrix, but in this case it becomes an infinite matrix. We will choose not
to use the matrix notation here, but simply write the transition probabilities
as

p(x,y) :]P{Xl =y|X0:fL’}, T,y € S.

The transition probabilities are nonnegative and the “rows” add up to 1, i.e.,
for each x € S,

> plz,y) = 1.

yeS

We have chosen to use z, y, z for elements of the state space S. We also define
the n-step transition probabilities

pn(z,y) =P{X, =y | Xo = z}.

43
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If0o<m,n < oo,

pm+n($,y) = P{Xm+n =Y | Xo = x}
= Z]P’{Xm+n =y, Xm =2| Xy =1z}
z€S

= me($, Z) pn(zvy)'

z€S

This equation is sometimes called the Chapman-Kolmogorov equation. It can
be considered the definition of matrix multiplication for infinite matrices.

Example 1. Random Walk with Partially Reflecting Boundary at
0. Let0<p<land S=1{0,1,2,...}.

The transition probabilities are given by
plz,z —1)=1-p, plz,z+1)=p, z>0,

and

Example 2. Simple Random Walk on the Integer Lattice. Let Z¢ be
the d-dimensional integer lattice, i.e.,

Z¢ = {(21,... ,2a) : zi € Z}.

Note that each element z of Z® has 2d “nearest neighbors” in Z¢ which are
distance 1 from z. Simple random walk on Z¢ is the process X,, taking values
in Z% which at each time moves to one of the 2d nearest neighbors of its current
position, choosing equally among all the nearest neighbors. More precisely, it
is the Markov chain with state space S = Z¢ and

_ [1/2d,if je —y| =1,
p(z,y) = { 0, otherwise.

Example 3. Queueing Model. Let X,, be the number of customers waiting
in line for some service. We think of the first person in line as being serviced
while all others are waiting their turn. During each time interval there is a
probability p that a new customer arrives. With probability g, the service
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for the first customer is completed and that customer leaves the queue. We
put no limit on the number of customers waiting in line. This is a Markov
chain with state space {0,1,2,...} and transition probabilities (see Example
2, Section 1.1):

p(z,z—1)=q(1-p), p(z,z)=qgp+(1-q)(1-p),
p(z,z+1)=p(1l—-gq), x>0
p(0,0) =1-p, p(0,1)=p.

As in the case of finite Markov chains, our goal will be to understand the
behavior for large time. Some of the ideas for finite chains apply equally
well to the infinite case. For example, the notion of communication classes
applies equally well here. Again, we call a Markov chain irreducible if all the
states communicate. All the examples discussed in this chapter are irreducible
except for a couple of cases where all the states but one communicate and that
one state x is absorbing, p(z,x) = 1. We can also talk of the period of an
irreducible chain; Examples 1 and 3 above are aperiodic, whereas Example
2 has period 2. It will not always be the case that an irreducible, aperiodic
Markov chain with infinite state space converges to an equilibrium probability
distribution.

2.2 Recurrence and Transience

Suppose X, is an irreducible Markov chain with countably infinite state
space S and transition probabilities p(z,y). We say that X,, is a recurrent
chain if for each state x,

P{X, = z for infinitely many n} = 1,

i.e., if the chain returns infinitely often to x. If an irreducible chain visits a
certain state x infinitely often then it must visit every state infinitely often.
(The basic reason is that if y is another state there is a positive probability
of reaching y from z. If z is visited infinitely often then we get this chance
of reaching y infinitely often. If a certain event has a positive probability of
occurring, and we get an infinite number of trials, then the event will occur
an infinite number of times.) If the chain is not recurrent, then every state is
visited only a finite number of times. In this case, the chain is called transient.
It is not always easy to determine whether a given Markov chain is recurrent
or transient. In this section we give two criteria for determining this.
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Fix a site x and assume that Xqg = z. Consider the random variable R
which gives the total number of visits to the site x, including the initial visit.
We can write R as

Rzil{Xn=a:},
n=0

where again we use I to denote the indicator function, which equals 1 if the
event occurs and 0 otherwise. If the chain is recurrent then R is identically
equal to infinity; if the chain is transient, then R < oo with probability 1. We
can compute the expectation of R (assuming X, = z),

E(R)=E> I{Xp=z}=) P{X,=gx}=) pal,2)
n=0 n=0 n=0

We will now compute E (R) in a different way. Let T be the time of first
return to z,

T =min{n > 0: X, = z}.

We say that T = oo if the chain never returns to x. Suppose P{T < oo} = 1.
Then with probability one, the chain always returns and by continuing we
see that the probability that the chain returns infinitely often is 1 and the
chain is recurrent. Now suppose P{T < oo} = g < 1, and let us compute the
distribution of R in terms of q. First, R = 1 if and only if the chain never
returns; hence, P{R =1} =1 —¢. If m > 1, then R = m if and only if the
chain returns m — 1 times and then does not return for the mth time. Hence,
P{R = m} = ¢™ !(1 — q). Therefore, in the transient case, q < 1,

E(R) = ZmP{R:m}: qum"l(l—q)=%_q<oo.
m=1 m=1

We have concluded the following;:

Fact. An irreducible Markov chain is transient if and only if the expected
number of returns to a state is finite, i.e., if and only if

o9)
Z pn(z, ) < 00.
n=0

Example. Simple Random Walk in Z?. We first take d = 1, and consider
the Markov chain on the integers with transition probabilities

1
plx,z+1)=p(z,z-1) = 3"
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We will concentrate on the state x = 0 and assume Xy = 0. Since this chain
has period 2, p,(0,0) = 0 for n odd. We will write down an exact expression
for p2,,(0,0). Suppose the walker is to be at 0 after 2n steps. Then the walker
must take exactly n steps to the right and n steps to the left. Any “path”
of length 2n that takes exactly n steps to the right and n steps to the left is
equally likely.

FIGURE 2.1: The graph of a random walk path that is at the origin after
16 steps.

Each such path has probability (1/2)2" of occurring since it combines 2n
events each with probability 1/2. There are (2:) ways of choosing which n
of the 2n steps should be to the right, and then the other n are to the left.

Therefore,
2n\ (1\?"  (2n)! [1\*"
P2n(0,0) = (n) (5) ~ nln! <§> ’

It is not so easy to see what this looks like for large values of n. However, we
can use Stirling’s formula to estimate the factorials. Stirling’s formula (see
Exercise 2.18) states that

n! ~V2mnn"e ",

where ~ means that the ratio of the two sides approaches 1 as n goes to
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infinity. If we plug this into the above expressions we get that

an(an) ~ \/% (21)

In particular, since > n~1/2 = oo,

0o
Z D2n (07 0) = 00,
n=0

and simple random walk in one dimension is recurrent.
We now take d > 1 so that the chain is on the d-dimensional integer lattice
Z% and has transition probabilities

plz,y) =1/2d, |z—y|=1

FIGURE 2.2: The lattice Z2.

Again we start the walk at 0 = (0,...,0). We will try to get an asymptotic
expression for po,(0,0) [again p,(0,0) = 0 for n odd]. The combinatorics
are somewhat more complicated in this case, so we will give only a sketch of
the derivation. Suppose a walker takes 2n steps. Then by the law of large
numbers, for large values of n, we expect that 2n/d of these steps will be
taken in each of the d components. We will need the number of steps in each
component to be even if we have any chance of being at 0 in n steps. For large
n the probability of this occurring is about (1/2)4~! (whether or not an even
number of steps have been taken in each of the first d — 1 components are
almost independent events; however, we know that if an even number of steps
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have been taken in the first d — 1 components then an even number of steps
have been taken in the last component as well since the total number of steps
taken is even). In each component, if about 2n/d steps have been taken, then
by (2.1) we would expect that the probability that that component equals 0
is about (m(n/d))~'/2. Combining this, we get an asymptotic expression

() ()"

Recall that > n~* < oo if and only if a > 1. Hence,

oo
=o00,d=1,2,
z_%m”(o’o) { <oo,d>3.

We have derived the following.

Fact. Simple random walk in Z2 is recurrent if d = 1 or 2 and is transient if
d>3.

We now consider another method for determining recurrence or transience.
Suppose X, is an irreducible Markov chain and consider a fixed state which
we will denote 2. For each state x, we set

a(z) =P{X, = z for some n >0 | Xog = z}.

Clearly, a(z) = 1. If the chain is recurrent, then a(z) = 1 for all z. However,
if the chain is transient there must be states z with a(z) < 1. In fact, although
not quite as obviously, if the chain is transient there must be points “farther
and farther” away from z with a(z) as small as we like.

If z # z, then

a(z) = P{X, = z for some n > 0| X, = z}
=P{X, =z for some n > 1| Xog =z}

:Z]P’{Xl:y|X0:x}IP’{Xn=zforsomen21|X1=y}
y€eES

= p(zy) a(y).

yeS

Summarizing, a(z) satisfies the following:

0<alz) <1, (2.2)
a(z) =1, inf{a(z):z€ S} =0, (2.3)

and
a(z) =Y pl@yaly), =z (24)

y€ES
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It turns out that if X,, is transient, then there is a unique solution to (2.2) —
(2.4) that must correspond to the appropriate probability. Moreover, it can
be shown (we prove this in Chapter 5, Section 5.5, Example 5) that if X, is
recurrent there is no solution to (2.2) — (2.4). This then gives another method
to determine recurrence or transience:

Fact. An irreducible Markov chain is transient if and only if for any z we
can find a function a(z) satisfying (2.2) - (2.4).

Example. Consider Example 1 in the previous section, random walk with

partially reflecting boundary. Let z = 0 and let us try to find a solution to

(2.2) - (2.4). The third equation states that
a(r)=(1-p)a(z—1)+pa(z+1), z>0.

From (0.5) and (0.6) we see that the only solutions to the above equation are
of the form

a(:c):cl—f-cz(l_p)m, p#1/2,

alz)=c +cox, p=1/2.
The first condition in (2.3) gives a(0) = 1; plugging this in gives

a(z) = (1 - c2) + 2 (%’) A1) (2.5)

a(z)=14cozx, p=1/2. (2.6)

If we choose ¢o = 0, we get a(z) = 1 for all z which clearly does not satisfy
(2.3). If p=1/2 and ¢ # 0, then the solution is not bounded and hence
cannot satisfy (2.2). Similarly, if p < 1/2, the solution to (2.5) will be un-
bounded for ¢o # 0. In this case, we can conclude that the chain is recurrent
for p < 1/2. For p > 1/2, we can find a solution. The second condition in
(2.3) essentially boils down to a(z) — 0 as z — oo, and we get

o= (52)

Therefore, for p > 1/2, the chain is transient.

2.3 Positive Recurrence and Null Recurrence

Suppose X, is an irreducible, aperiodic Markov chain on the infinite state
space S. In this section we investigate when a limiting probability distribution
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exists. A limiting probability m(z),z € S is a probability distribution on §
such that for each z,y € S,

lim py(y,z) = 7(x).
n—oo
If X,, is transient, then
lim p,(y,z) =0, (2.7
n—oo

for all x,y, so no limiting probability distribution exists. It is possible, how-
ever, for (2.7) to hold for a recurrent chain. Consider, for example, simple
random walk on Z described in the last section (this is actually a periodic
chain, but a small modification can be made to give an aperiodic example).
It is recurrent but ps,(0,0) — 0 as n — 0o. We call a chain null recurrent if
it is recurrent but

lim p,(z,y) =0.
n—oo

Otherwise, a recurrent chain is called positive recurrent.

Positive recurrent chains behave very similarly to finite Markov chains. If
X, is an irreducible, aperiodic, positive recurrent Markov chain, then for every
x,y, the limit

lim pn(y,z) = 7(z) > 0,
n—00

exists and is independent of the initial state y. The w(x) give an invariant
probability distribution on S, i.e.,

> w(y)ply, z) = 7(x). (2.8)

yES

Moreover, if we consider the return time to a state ,
T =min{n > 0| X,, = z},
then for a positive recurrent chain,
E(T| X, =) =1/n(z).

If X, is null recurrent, then T' < oo with probability 1, but E (T") = co. If X,
is transient, then T' = oo with positive probability.

One way to determine whether or not a chain is positive recurrent is to
try to find an invariant probability distribution. It can be proved that if an
irreducible chain is positive recurrent, then there exists a unique probability
distribution satisfying (2.8); moreover, if a chain is not positive recurrent,
there is no probability distribution satisfying (2.8). This gives a good criterion:
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try to find an invariant probability distribution. If it exists, then the chain is
positive recurrent; if none exists, then it is either null recurrent or transient.

Example. Consider again the example of random walk with partially re-
flecting boundary. We will try to find a probability distribution that satisfies
(2.8), i.e., a nonnegative function 7(x) satisfying (2.8) and

Z m(z) = 1. (2.9)
€S
In this example, (2.8) gives
mz+1)(1—-p)+nlx—1)p=mn(z), =>0, (2.10)
(1) (1 — p) + ©(0)(1 — p) = =(0). (2.11)

By (0.5) and (0.6), the general solution to (2.10) is

r(2) = 1 + ez (%) A1,

() =c +cox, p=1/2.

Equation (2.11) gives m(0) = [(1 — p)/p]7(1). Plugging this into the above
gives

m(z) = ca <1—f—p)z, p#1/2,

m(z)=c, p=1/2.

Now we impose the condition (2.9): can we choose the constant ¢; or ca so
that > w(z) = 1?7 For p = 1/2, it clearly cannot be done. Suppose p # 1/2.
Clearly, we would need ¢ #0. If p > 1/2, > [p/(1 —p)]* = 0o and we cannot
find such a ¢y (we already knew the chain was transient in this case, so it
could not possibly be positive recurrent). However if p < 1/2, the sum is
finite and we can choose

o-(5) [E65)] (22 ()

y=0

In this case the chain is positive recurrent and this gives the invariant proba-
bility. Summarizing the discussion in the last two sections we see that random
walk with partially reflecting boundary is

positive recurrent if p < 1/2,
null recurrent if p = 1/2,
transient if p > 1/2.
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2.4 Branching Process

In this section we study a stochastic model for population growth. Consider
a population of individuals. We let X,, denote the number of individuals at
time n. At each time interval, the population will change according to the
following rule: each individual will produce a random number of offspring;
after producing the offspring, the individual dies and leaves the system. We
make two assumptions about the reproduction process:

1. Each individual produces offspring with the same probability distribu-
tion: there are given nonnegative numbers pg, p1,p2,... summing to 1 such
that the probability that an individual produces exactly & offspring is py.

2. The individuals reproduce independently.

The number of individuals at stage n, X, is then a Markov chain with state
space {0,1,2,...}. Note that 0 is an absorbing state; once the population dies
out, no individuals can be produced. It is not so easy to write down explicitly
the transition probabilities for this chain. Suppose that X,, = k. Then k
individuals produce offspring for the (n + 1)st generation. If Yj,... Y} are
independent random variables each with distribution P{Y; = j} = p;, then

p(k,j) :P{Xfﬂ-l =J | Xn =k}:P{Yl ++ Y :.7}

The actual distribution of Y7 4 --- 4+ Y}, can be expressed in terms of convo-
lutions, but we will not need the exact form here. Let u denote the mean
number of offspring produced by an individual,

i=0
Then,

It is relatively straightforward to calculate the mean number of individuals,
E (Xn),

E(Xn) =Y P{Xn_1=k}E(Xy | Xn_1=k)
k=0

=Y kuP{Xp_1 =k} = pE(Xn_1).

k=0

Or, if we do this n times,

E(Xn) = p"E(Xo).
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Some interesting conclusions can be reached from this expression. If p < 1,
then the mean number of offspring goes to 0 as n gets large. The easy estimate

E(X,) = iw{xn =k} > ip{xn =k} =P{X, > 1}
k=0 k=1

can then be used to deduce that the population eventually dies out,

lim P{X, =0} =1.

n—oo
If p = 1, the expected population size remains constant while for p > 1, the
expected population size grows. It is not so clear in these cases whether or
not the population dies out with probability 1. [It is possible for X, to be 0
with probability very near 1, yet E (X,,) not be small.] Below we investigate
how to determine the probability that the population dies out. In order to
avoid trivial cases we will assume that

po>0; po+pr <L (2.12)

Let
an(k) =P{X, =0| Xo = k}

and let a(k) be the probability that the population eventually dies out assum-
ing that there are k individuals initially,

a(k) = lim an(k).
If the population has k individuals at a certain time, then the only way for

the population to die out is for all £ branches to die out. Since the branches
act independently,

a(k) = [a(1)]*.

It suffices therefore to determine a(1) which we will denote by just a and
call the extinction probability. Assume now that Xo = 1. If we look at one
generation, we get

a = P{population dies out | Xy = 1}

oo
= ZP{Xl =k | Xo = 1} P{population dies out | X; = k}

k=0
[ee) oo

=Y pra(k) =) pra*.
k=0 k=0

The quantity on the right is of sufficient interest to give it a name. If X is
a random variable taking values in {0,1,2,...}, the generating function of X
is the function

$(s) = ¢x(s) =E(s¥) =Y _s"P{X = k}.
k=0
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Note that ¢(s) is an increasing function of s for s > 0 with ¢(0) = P{X = 0}
and ¢(1) = 1. Differentiating, we get

'(s) = stk_llP’{X =k},
k=1

ik k—1)s*2P{X = k}.

k=2
Hence,
oo
= kP{X =k} =E(X), (2.13)
k=1
and for s > 0, if P{X > 2} > 0,
¢"(s) > 0. (2.14)
If Xi,..., X, are independent random variables taking values in the nonneg-

ative integers, then

X144+ xm (8) = Ox,(8) - Dx.,. (8)-

The easiest way to see this is to use the expression ¢x(s) = E (sX) and the
product rule for expectation of independent random variables.

Returning to the branching process we see that the extinction probability
a satisfies the equation

a = ¢(a).

Clearly, a = 1 satisfies this equation, but there could well be other solutions.
Again, we assume Xy = 1. Then the generating function of the random
variable Xy is a and the generating function of X, is ¢(a). Let ¢™(a) be the
generating function of X,,. We will now show that

¢"(a) = ¢(¢" ' (a))-

To see this, we first note

"(a) = ip{xn =k}a*

k=0
oo )

P{X; = j}P{X, =k | X, = j}| a"

s
Mg L

P{X,_ 1_k|X0=]}a

<.
Il
o
>
Il
o
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Now, if Xy = j, then X,,_; is the sum of j independent random variables
each with the distribution of X,,_; given Xq = 1. Hence the sum over k is the
generating function of the sum of j independent random variables each with
generating function ¢"~!(a) and hence

S P{Xn1 =k| Xo=j}a* = [¢" (o),

k=0
and
¢"(a) =Y pl¢" () = $(¢" ' (a)).
§=0
We now have a recursive way to find ¢™(a) and hence to find
an(l) =P{X, =0] Xo =1} = ¢"(0).

We are now ready to demonstrate the following: the extinction probability
a is the smallest positive root of the equation a = ¢(a). We have already seen
that a must satisfy this equation. Let @ be the smallest positive root. We will
show by induction that for every n, a,, = P{X,, = 0} < a (which implies that
a = lima, < a). This is obviously true for n = 0 since ag = 0. Assume that
ap_1 < a. Then

P{X, =0} = ¢"(0) = ¢(¢""'(0)) = ¢(an-1) < ¢(a) = a.
The inequality follows from the fact that ¢ is an increasing function.
Example 1. Suppose po = 1/4,p; = 1/4,p2 = 1/2. Then p = 5/4 and

11 1,
(25(0,)—-14'[—10;4'50,.

Solving a = ¢(a) gives the solutions a = 1,1/2. The extinction probability is
1/2.

Example 2. Suppose pg = 1/2,p; = 1/4,p2 = 1/4. Then p = 3/4 and

111,
¢(a)—§+za+za.

Solving a = ¢(a) gives the solutions a = 1,2. The extinction probability is 1.
(We had already demonstrated this fact since p < 1.)

Example 3. Suppose pg = 1/4,p; = 1/2,p2 = 1/4. Then p =1 and

11 1,
¢(a)—z+za+za.
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Solving a = ¢(a) gives the solutions a = 1,1. The extinction probability is 1.

We finish by establishing a criterion to determine whether or not a < 1.
We have already seen that if y < 1, then a = 1. Suppose u = 1. By (2.13),
¢'(1) = 1 and therefore by (2.14), ¢'(s) < 1 for s < 1. Hence for any s < 1,

1—¢(s) = /1 ¢ (s)ds < 1— s,

i.e., ¢(s) > s. Therefore, if p = 1, the extinction probability is 1. This is
an interesting result—even though the expected population size stays at 1,
the probability that the population has died out increases to 1. One corollary
of this is that the conditional size of the population conditioned that it has
not died out must increase with time. That is to say, if one is told at some
large time that the population has not died out, then one would expect the
population to be large.

Now assume g > 1. Then ¢'(1) > 1 and hence there must be some s < 1
with ¢(s) < s. But ¢(0) > 0. By standard continuity arguments, we see that
there must be some a € (0, s) with ¢(a) = a. Since ¢”'(s) > 0 for s € (0, 1), the
curve is convex and there can be at most one s € (0, 1) with ¢(s) = s. In this
case, with positive probability the population lives forever. We summarize
these results as a theorem.

Theorem. If u < 1 and po > 0, the extinction probability a = 1, i.e., the
population eventually dies out. If u > 1, then the extinction probability a < 1
and equals the unique root of the equation

with 0 < t < 1.

2.5 Exercises

2.1 Consider the queueing model (Example 3 of Section 2.1). For which
values of p, q is the chain null recurrent, positive recurrent, transient?

For the positive recurrent case give the limiting probability distribution 7.
What is the average length of the queue in equilibrium?

For the transient case, give a(z) = the probability starting at = of ever
reaching state 0.

2.2 Consider the following Markov chain with state space S = {0,1,...}. A
sequence of positive numbers p;, po, ... is given with Zfil p; = 1. Whenever
the chain reaches state 0 it chooses a new state according to the p;. Whenever



58 Introduction to Stochastic Processes

the chain is at a state other than 0 it proceeds deterministically, one step at
a time, toward 0. In other words, the chain has transition probability

p(z,z—1)=1, = >0,

p(0,z) =p;, x>0.

This is a recurrent chain since the chain keeps returning to 0. Under what
conditions on the p, is the chain positive recurrent? In this case, what is the
limiting probability distribution 7?7 [Hint: it may be easier to compute E (T')
directly where T is the time of first return to 0 starting at 0.]

2.3 Consider the Markov chain with state space S = {0,1,2,...} and tran-
sition probabilities:

p(z,z+1)=2/3; p(z,0)=1/3.
Show that the chain is positive recurrent and give the limiting probability .

2.4 Consider the Markov chain with state space S = {0,1,2,...} and tran-
sition probabilities:

p($,$+2):p, p(lf,l‘—]):]—p, z>0.

p(0,2) =p, p(0,0)=1-p.

For which values of p is this a transient chain?
2.5 Let X,, be the Markov chain with state space Z and transition probability

p(n,n+1)=p, pnn—-1)=1-p,

where p > 1/2. Assume X, = 0.

(a) Let Y = min{ Xy, X1,...}. What is the distribution of ¥'?

(b) For positive integer k, let Ty = min{n : X,, = k} and let e(k) = E [Tk].
Explain why e(k) = ke(1).

(c) Find e(1). (Hint: (b) might be helpful.)

(d) Use (c) to give another proof that e(1) = oo if p = 1/2.

2.6 Suppose J1, Ja, ... are independent random variables with P{J; = 1} =
1 - P{J; = 0} = p. Let k be a positive integer and let T} be the first time
that k consecutive 1s have appeared. In other words, Ty, = n if J, = Jo—1 =
o+ = Ju_k-1) = 1 and there is no m < n such that Jp, = Jp—1 = -+ =
Jm—(k—1) = 1. Let Xo = 0 and for n > 0, let X;, be the number of consecutive
Is in the last run, ie., X, =k if J,_xr=0and J;=1forn—-k <i<n.
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(a) Explain why X,, is a Markov chain with state space {0,1,2,...} and
give the transition probabilities.

(b) Show that the chain is irreducible and positive recurrent and give the
invariant probability 7.

(c) Find E[T] by writing an equation for E[T%] in terms of E[Tk_;] and
then solving the recursive equation.

(d) Find E [T}] is a different way. Suppose the chain starts in state k, and
let Tk be the the time until returning to state k and To the time until the
chain reaches state 0. Explain why

E(T}] = E[To] + E[T}],
find E [Tp)], and use part (b) to determine E [T}].

2.7 Let X, be a Markov chain with state space S = {0,1,2,...}. For each of
the following transition probabilities, state if the chain is positive recurrent,
null recurrent, or transient. If it is positive recurrent, give the stationary
probability distribution:

(a) p(z,0)=1/(z+2), plz,z+1)=(z+1)/(z+2);
(b) p(z,0) = (z+1)/(x+2), p(z,z+1)=1/(z+2);
(c) p(z,0)=1/(z®>+2), plz,z+1)= (22 +1)/(x? +2).

2.8 Given a branching process with the following offspring distributions,
determine the extinction probability a.

(a) po = .25,p; = 4,p2 = .35.

(b) po = .5,p1 = .1,p3 = 4.

()Po— 91,p1 = .05,p2 = .01,p3 = .01,p¢ = .01, p13 = .0L.

(d) pi = (1 — q)q*, for some 0 < g < 1.

2.9 Consider the branching process with offspring distribution as in Exercise
2.8(b) and suppose Xy = 1.

(a) What is the probability that the population is extinct in the second
generation (X, = 0), given that it did not die out in the first generation
(X1 >0)?

(b) What is the probability that the population is extinct in the third
generation, given that it was not extinct in the second generation?

2.10 Consider a branching process with offspring distribution given by {p,}.
We will make the process into an irreducible Markov chain by asserting that
if the population ever dies out, then the next generation will have one new
individual [in other words, p(0,1) = 1]. For which {p,} will this chain be
positive recurrent, null recurrent, transient?

2.11 Consider the following variation of the branching process. At each time
n, each individual produces offspring independently using offspring distribu-
tion {p,}, and then the individual dies with probability ¢ € (0,1). Hence,
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each individual reproduces j times where j is the lifetime of the individual.
For which values of q, {p,} do we have eventual extinction with probability
one?

2.12 Consider the branching process with po = 1/3,p1 = 1/3,p2 = 1/3.
Find, with the aid of a computer, the probability that the population dies out
after n steps where n = 20, 100, 200, 1000, 1500, 2000, 5000. Do the same with
values pg = .35,p1 = .33,p2 = .32, and then do it with values pg = .32,p; =
.33, p2 = .35.

2.13 Consider a population of animals with the following rule for (asexual)
reproduction: an individual that is born has probability ¢ of surviving long
enough to produce offspring. If the individual does produce offspring, she
produces one or two offspring, each with equal probability. After this the
individual no longer reproduces and eventually dies. Suppose the population
starts with four individuals.

(a) For which values of ¢ is it guaranteed that the population will eventually
die out?
(b) If ¢ = .9, what is the probability that the population survives forever?

2.14 Let X,, be the number of individuals at time n of a branching process
with g > 1. Assume Xy = 1. Let ¢ be the generating function for the offspring
distribution, and let a < 1 be the extinction probability.

(a) Explain why ¢'(a) < 1.
(b) Let a,, = P{X,, = 0}. Using part (a) show that there is a p < 1 such
that for all n sufficiently large

a—ant1 < pla—ap).
(c) Show that there exist b > 0, ¢ < oo such that for all n,
P{ extinction | X, # 0} < ce™®".

In other words, if the population is going to go extinct it is very likely to do
it in the first few generations.

2.15 Let X;, Xo,... be independent identically distributed random variables
taking values in the integers with mean 0. Let Sy = 0 and

Sp=X1+ -+ Xa.

(a) Let

Gn(z)=E iI{Sj =z}
j=0
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be the expected number of visits to « in the first n steps. Show that for all n
and =, G,(0) > G,(x). (Hint: consider the first j with S; = z.)
(b) Recall that the law of large numbers implies that for each € > 0,

lim P{|S,| < ne}=1.
n—00

Show that this implies that for every ¢ > 0,

(c) Using (a) and (b), show that for each M < oo there is an n such that
Gn(0) > M.
(d) Conclude that S, is a recurrent Markov chain.

2.16 Let p1,po,p—1,... be a probability distribution on {...,—-2,-1,0,1}
with negative mean

ann:u<0.
n

Define a Markov chain X, on the nonnegative integers with transition prob-
abilities

p(n>m) = Pm-n, m >0,

p(n,O) = Z Pm—n-

m<0

In other words, X, acts like a random walk with increments given by the
p; except that the walk is forbidden to jump below 0. The purpose of this
exercise is to show that the chain is positive recurrent.

(a) Let m(n) be an invariant probability for the chain. Show that for each
n > 0,

[e9)
m(n) = Z T(M)Pr—m.-
m=n—1
(b) Let ¢, = p1—n. Show there exists an a € (0, 1) such that
o=q+qa+go’t---.

(Hint: ¢, is the probability distribution of a random variable with mean
greater than 1. The right-hand side is the generating function of the g,.)

(c) Use the a from (b) to find the invariant probability distribution for the
chain.
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2.17 Let p(z,y) be the transition probability for a Markov chain on a state
space S. Call a function f superharmonic at z for p if

> (@) fy) < f(o).

yeS

Fix a state z € S.
(a) Let A be the set of all functions f with f(z) =1; 0 < f(y) < 1 for all
y € S; and that are superharmonic at all y # 2. Let g be defined by

g(z) = inf f(z).

feA

Show that g € A.
(b) Show that for all z # z,

> p(@.v)g(y) = 9(x).

yeS

[Hint: suppose >, P(z,y)9(y) < g(z) for some z. Show how you can decrease
g a little at z so that the function stays superharmonic.
(c) Let g be as in (a). Show that if g(z) < 1 for some z, then

9@ =0

[Hint: let € = inf, g(z) and consider h(z) = (g(z) —€)/(1 —¢).]

(d) Conclude the following: suppose that an irreducible Markov chain with
transition probabilities p(z,y) is given and there is a function f that is su-
perharmonic for p at all y # z; f(2) =1; 0 < f(y) <1, y € S; and such that
f(z) < 1 for some z € S. Then the chain is transient.

2.18 In this exercise, we will establish Stirling’s formula

n! ~ V2rpt(/2 e, (2.15)
Let X, Xo,... be independent Poisson random variables with mean 1 and let

Y, = X1 +---+ X, which is a Poisson random variable with mean n. Let
k
p(n, k) =P{Y, =k} =e™" Ik

(a) Use the central limit theorem to show that if a > 0,
lim Z p(n, k) = /a L e "% dy
n—oo ’ 0 Vo ’
n<k<n+ta\n
(b) Show that if @ > 0, n is a positive integer, and n < k < n + ay/n, then

e~ p(n,n) < p(n, k) < p(n,n).
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(c¢) Use (a) and (b) to conclude that

1
p(n,n) ~ Tor

Stirling’s formula (2.15) follows immediately.
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Chapter 3

Continuous-Time Markov Chains

3.1 Poisson Process

Consider X; the number of customers arriving at a store by time ¢. Time is
now continuous so t takes values in the nonnegative real numbers. Suppose we
make three assumptions about the rate at which customers arrive. Intuitively,
they are as follows:

1. The number of customers arriving during one time interval does not
affect the number arriving during a different time interval.

2. The “average” rate at which customers arrive remains constant.
3. Customers arrive one at a time.

We now make these assumptions mathematically precise. The first assump-
tion is easy: for s;1 < t; < 89 <ty < -+ < s, < t,, the random variables
Xi, — Xs,y... Xt, — Xs, are independent. For the second two assumptions,
let A be the rate at which customers arrive, i.e., on the average we expect A\t
customers in time ¢. In a small time interval [¢, ¢ + At], we expect that a new
customer arrives with probability about AAf. The third assumption states
that the probability that more than one customer comes in during a small
time interval is significantly smaller than this. Rigorously, this becomes

]P{Xt+At = Xt} =1-)At + O(At), (31)
P{Xt+At = Xt + 1} = MAt + O(At), (32)

Here o(At) represents some function that is much smaller than At for At
small, i.e.,
At
lim o(At)
At—0 At
A stochastic process X; with Xy = 0 satisfying these assumptions is called a
Poisson process with rate parameter .

= 0.

65
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We will now determine the distribution of X;. We will actually derive the
distribution in two different ways. First, consider a large number n and write

n

Xy = Z[th/n - X(j—l)t/n]' (3.4)
j=1

We have written X; as the sum of n independent, identically distributed
random variables. If n is large, the probability that any of these random
variables is 2 or more is small; in fact,

P{X;t/n — X(j-1)t/n = 2 for some j < n}
< ZP{th/n - X(-1t/m > 2}
Jj=1

The last term goes to 0 as n — oo by (3.3). Hence we can approximate the
sum in (3.4) by a sum of independent random variables which equal 1 with
probability A(¢/n) and 0 with probability 1 — A(¢/n). By the formula for the
binomial distribution,

=) (2) (-2)7

Rigorously, we can then show:

- ()2 (-2

To take this limit, note that

(n)n_k_ o =D (k1) 1

lim =
n—00 k! nk k!’

n—oo

and
n—k n —k
A
lim (1— ——) = lim (1— éE) lim (1 — -E) — e M
n—oo n n—oo n n-—00 n
Hence,
e ()
P{X;: =k} =e M—k!—,

i.e., X; has a Poisson distribution with parameter At.
We now derive this formula in a different way. Let

Pu(t) = P{X, = k}.
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Note that Py(0) = 1 and P;(0) = 0, k£ > 0. Equations (3.1) through (3.3) can
be used to give a system of differential equations for Py (t). The definition of
the derivative gives

. 1
P(t) = lim_ A FlXerae = k) - P{X; = k}).
Note that

P{Xeiae =k} = P{X, = k} P{Xryne = k | X, = k}
Y P{X =k - 1}P{Xpync=k| X, =k—1}
FP{X, <k-2}P{Xpyac=k| X, <k—2}
= Pu(t) (1 — AAL) + Py_1 () AAE + o(At).

Therefore,
Pl(t) = APx—1(t) — APy (t).
We can solve these equations recursively. For k = 0, the differential equation
Py(t) = —=AR(t), FPo(0) =1
has the solution
Py(t) = e,
To solve for k > 0 it is convenient to consider
fe(t) = e Py(t).
Then fo(t) = 1 and the differential equation becomes
fi(®) = Afe-1(t), fr(0) =0.
It is then easy to check inductively that the solution is
fr(t) = Aotk k!,
and hence

k
Py(t) = e—)‘tgkz!z—,
which is what we derived previously.

Another way to view the Poisson process is to consider the waiting times
between customers. Let T,,,n = 1,2,... be the time between the arrivals of
the (n — 1)st and nth customers. Let Y,, = T7 4 --- 4+ T}, be the total amount
of time until n customers arrive. We can write

Y, = inf{t: X; = n},
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T,.=Y,— Y, 1.

Here inf stands for “infimum” or least upper bound which is the generalization
of minimum for infinite sets; e.g., the infimum of the set of positive numbers
is 0. The T; should be independent, identically distributed random variables.
One property that the T; should satisfy is the loss of memory property: if we
have waited s time units for a customer and no one has arrived, the chance
that a customer will come in the next ¢ time units is exactly the same as
if there had been some customers before. Mathematically, this property is
written

PT, > s+t |T, > s} = P{T; > t}.

The only real-valued functions satisfying f(s +t) = f(s)f(¢) are of the form
f(t) = e7®. Hence the distribution of T; must be an exponential distribu-
tion with parameter b. [Recall that a random variable Z has an exponential
distribution with rate parameter b if it has density

f(z) =be™®, 0<2z< oo,
or equivalently, if it has distribution function
F(z2)=P{Z<z}=1-e" 2>0.

An easy calculation gives E(Z) = 1/b.] It is easy to see what b should be.
For large t values we expect for there to be about At customers. Hence,
Yy =~ t. But Y, ~ nE(T;) = n/b. Hence A = b. This gives a means of
constructing a Poisson process: take independent random variables 11,715, . . .,
each exponential with rate A, and define

Yn:T1+"'+Tn7

Xt:n, lfYnSt<Yn+1

From this we could then conclude in a third way that the random variables
X: have a Poisson distribution. Conversely, given that we already have the
Poisson process, it is easy to compute the distribution of T; since

P{T), >t} = P{X, = 0} = e

3.2 Finite State Space

In this section we discuss continuous-time Markov chains on a finite state
space. We start by discussing some facts about exponential random variables.
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Suppose 11, ... ,T, are independent random variables, each exponential with
rates by,... , b,, respectively. Intuitively, we can think of n alarm clocks which
will go off at times T7, ... ,T,. Consider the first time when any of the alarm

clocks goes off; more precisely, consider the random variable
T = min{Ty,... ,T,}.
Note that
P{T >t} =P{Th >¢t,..., T, >t}
=P{Ty >t} P{T, >t} --- P{T, > t}

— e—b1t e—b2t . e—bnt — e—(b1+“'+bn)t’

In other words, T has an exponential distribution with parameter by +- - - +b,.
Moreover, it is easy to give the probabilities for which of the clocks goes off
first,

P{T, = T} :/ BT, > t,... Ty > t} dP{T} = t}
0

oo
:/ e~ bzt tba)tp, o=bit gy
0

b+ by
In other words, the probability that the ith clock goes off first is the ratio
of b; to by + -+ + b,. If we are given an infinite sequence of exponential
random variables T, Ty, ..., with parameters by, bo, ..., the same result holds
provided that b; + bs + - -+ < c0.

Suppose now that we have a finite state space S. We will define a continuous-
time process X; on S that has the Markov property,

P{X: =y | X;,0<r <s} =P{X;, =y | X},
and that is time-homogeneous,
P{Xi=y| Xs =2z} =P{X;—s =y | Xo =z}

For each z,y € S,x # y we assign a nonnegative number a(z, y) that we think
of as the rate at which the chain changes from state x to state y. We let a(z)
denote the total rate at which the chain is changing from state z, i.e.,

a(z) = ofz,y).
y#z

A (time-homogeneous) continuous-time Markov chain with rates « is a stochas-
tic process X; taking values in S satisfying

P{Xitar =z | Xy =z} =1 — a(x)At + o(At), (3.5)
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P{Xirac = | X =y} = aly, o)At +o(At), y#z.  (36)

In other words, the probability that the chain in state y jumps to a different
state x in a small time interval of length At is about a(y, ) At. For the Poisson
process, we used the description for small At to write differential equations for
the probabilities. We do the same in this case. If we let p,(t) = P{X; = z},
then the equations above can be shown to give a system of linear differential
equations,

PL(t) = —a(@)pa(t) + Y _ ey, z)py (t).

y#zT

If we impose an initial condition, p;(0),z € S, then we can solve the system.
This system is often written in matrix form. Let A be the matrix whose (z,y)
entry equals a(z,y) if z # y and equals —a(z) if x = y. Then if p(¢) denotes
the vector of probabilities, the system can be written

P (1) = p(t)A. (3.7)

The matrix A is called the infinitesimal generator of the chain. Note that the
row sums of A equal 0, the nondiagonal entries of A are nonnegative, and
the diagonal entries are nonpositive. From differential equations (see Section
0.2), we can give the solution

Bp(t) = p(0)e'A.

We can also write this in terms of transition matrices. Let pi(x,y) = P{X; =
y | Xo = z} and let P; be the matrix whose (z,y) entry is p;(z,y). The
system of differential equations can be written as a single matrix equation:

d
EPt = PtA., Po = I (38)

The matrix P, is then given by
Pt = etA.
Example 1. Consider a chain with two states—0,1. Assume «(0,1) =1 and
a(1,0) = 2. Then the infinitesimal generator is
0 1

ol—11
A_1[2 —2]'

A we diagonalize the matrix. The eigenvalues are

In order to compute et
0, —3. We can write

D =Q'AQ,
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p-[0.0] a-[1 1], -] 1)

We use the diagonalization to compute the exponential e*4.

o~ (tA)"

where

Pt = etA =
n!

Q(D)"Q !

n!

2 L0

0

[(1)693t]Q—1
_ 2/31/3J+e_3t[ 1/3—1/3].

3
Il

I
o

T 12/31/3 -2/3 2/3
Note that
lim P, = [”] ,
t— o0 m

where © = (2/3,1/3).

Example 2. Consider a chain with four states—0, 1, 2, 3—and infinitesimal
generator

0o 1 2 3
ol-1 1 0 O
1f 1 =31 1
A_201—21

301 1 =2

The eigenvalues of A are 0,—1,—3,—4 with right eigenvectors (which are
left eigenvectors as well since A is symmetric) (1,1,1,1), (1,0,-1/2,-1/2),
(0,0,—-1/2,1/2), and (-1/3,1,—1/3,1/3). Then,

D =Q 'AQ,

where

0 1 1 0-1/3
0 lr o0 o0 1
o] = [1-12-1/2-1/3]"
4 1-1/2 1/2-1/3

Il
cocooo
cwo o

O O = O

1/41/4 1/4 1/4
| 2/3 0-1/3-1/3
Q= 0 0 -1 1

~1/43/4 -1/4 —1/4
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Therefore,

Pt — €tA — QetDQ—l _

1/41/41/4 1/4 2/30 —-1/3 —1/3
1/41/41/41/4|  _,| 00 0 0
1/41/41/41/4| ¢ | -1/30 1/6 1/6
1/41/41/41/4 ~1/30 1/6 1/6
00 0 0 1/12 —1/4 1/12 1/12
|00 0 0|, _u|-1/4 3/4-1/4-1/4
te oo 1212t | 1712 -1/4 1/12 1/12
00-1/2 1/2 1/12 —1/4 1/12 1/12
Note that
1/41/41/4 1/4
pop | 1/41/41/41/4
b £ T 1 1/41/41/41/4

1/41/41/41/4

We can use exponential waiting times to give an alternative description of
the Markov chain. Suppose rates a(z,y) have been given. Suppose Xy = z.
Let

T =inf{t: X; # z},

i.e., T is the time at which the process first changes state. The Markov
property can be used to see that T' must have the loss of memory property,
and hence T' must have an exponential distribution. By (3.5),

P{T < At} = a(z)At + o(At).

In order for this to be true, T must be exponential with parameter a(x).
What state does the chain move to? The infinitesimal characterization (3.6)
can be used to check that the probability that the state changes to y is exactly
a(z,y)/a(x). By the discussion of exponential distributions above we can
think of this in another way. Independent “alarm clocks” are placed at each
state y, with each alarm going off at an exponential time with rate a(z,y).
The chain stays in state z until the first such clock goes off and then it moves
to the state corresponding to that clock.

As in the case for discrete time, we are interested in the large-time behavior.
As Examples 1 and 2 in this section demonstrate we expect

s

tllm Pt = Ht - . R

ST
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where 7 represents a limiting probability. The limiting probability should not
change with time; hence, by (3.7),

TA =0.

In this case, 7 is an eigenvector of A with eigenvalue 0. The limit the-
ory now parallels that for discrete time. Suppose for ease that the chain is
irreducible. [A continuous-time Markov chain is irreducible if all states com-
municate, i.e., for each z,y € S, there exist z;,...,z; € S with a(z, z1),
a(z1,22),... ,a(zj-1, 2j), a(z;,y) all strictly positive.] In this case, one can
show (see Exercise 3.4) using the results for stochastic matrices that:

1. There is a unique probability vector 7 satisfying

TA =0.

2. All other eigenvalues of A have negative real part.

By analyzing the matrix differential equation it is not too difficult to show
that

]

lim Pt =
t—oo

™

If the chain is reducible, we must analyze the chain on each communication
class. We have not discussed periodicity. This phenomenon does not occur
for continuous-time chains; in fact, one can prove (see Exercise 3.7) that for
any irreducible continuous-time chain, P; has strictly positive entries for all
t > 0.

A number of the methods for analyzing discrete-time chains have analogues
for continuous-time chains. Suppose X; is an irreducible continuous-time
chain on finite state space S and suppose z is some fixed state in S. We will
compute the mean passage time to z starting at state x, i.e., b(z) = E(Y |
Xo = x), where

Y = inf{t: X; = z}.

Clearly, b(z) = 0. For  # z, assume Xo = x and let T be the first time that
the chain changes state as above. Then

E(Y | Xo=2)=E(T|Xo=2)+) P{Xr=y|Xo=2}E(Y | Xo=y).
yeES

Since T is exponential with parameter a(z) the first term on the right hand
side equals 1/a(z). Also from the above discussion, P{X; = y | Xo = z} =
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oz, y)/a(z). Finally, since b(z) = 0, we do not need to include the y = z
term in the sum. Therefore, the equation becomes

o2)b(@) =1+ Y alz,y)b(y).

Y#T,z

If we let A be the matrix obtained from A by deleting the row and column
associated to the state z, we get the matrix equation

0=1+ Ab,
or
b=[-A]"'1.

(The matrix Aisa square matrix whose row sums are all nonpositive and at
least one of whose row sums is strictly negative. From this one can conclude
that all the eigenvalues of A have strictly negative real part, and hence A is
invertible.)

Example 3. Consider Example 2 in this section and let us compute the
expected time to get from state 0 to state 3. Then z = 3,

o 1 2
ofl—-11 0
A=1]1-31
2l 0 1 =2

and
b=[-A]"'1=(8/3,5/3,4/3).

Therefore the expected time to get from state 0 to state 3 is 8/3.

3.3 Birth-and-Death Processes

In this section we consider a large class of infinite state space, continuous-
time Markov chains that are known by the name of birth-and-death processes.
The state space will be {0, 1,2, ...}, and changes of state will always be from n
ton+1orn ton—1. Intuitively we can view the state of the system as the size
of a population that can increase or decrease by 1 by a “birth” or a “death,”
respectively. To describe the chain, we give birth rates A\,,n = 0,1,2,...
and death rates p,,n = 1,2,3,.... If the population is currently n, then
new individuals arrive at rate A, and individuals leave at rate u, (note if the
population is O there can be no deaths, so uo = 0).
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If we let X; denote the state of the chain at time ¢, then

P{Xeyae =n| Xe =n} =1- (un + An)At + 0o(At),
]P){Xt+At =n+1 I Xt = TL} = )\nAt + O(At),

]P{Xt—l—At =n-1 I Xt = 'Il} = /J,nAt + O(At)

As before, we can convert these equations into differential equations for P, (t) =
P{X; = n} and get the system

P (t) = pnt1Pai1(t) + Anc1Pao1(t) = (n + An) Po(t). (3.9)
To compute the transition probabilities
pe(m,n) =P{X; =n| Xo =m}
we need only solve the system with initial conditions,

Example 1. The Poisson process with rate parameter A is a birth-and-death
process with A, = A and u, = 0.

Example 2. Markovian Queueing Models. Suppose X; denotes the
number of people on line for some service. We assume that people arrive at a
rate \; more precisely, the arrival rate of customers follows a Poisson process
with rate A. Customers are also serviced at an exponential rate u. We note
three different service rules:

(a) M/M/1 queue. In this case there is one server and only the first person
in line is being serviced. This gives a birth-and-death process with A, = A
and p, = p (n > 1). The two Ms in the notation refer to the fact that
both the arrival and the service times are exponential and hence the process
is Markovian. The 1 denotes the fact that there is one server.

(b) M/M/k queue. In this case there are k servers and anyone in the first
k positions in the line can be served. If there are k people being served, and
each one is served at rate u, then the rate at which people are leaving the
system is ku. This gives a birth-and-death process with A, = A and

[ np,ifn <K,
Fn = kp, if n > k.

(¢c) M/M/oo queue. In this case there are an infinite number of servers,
so everyone in line has a chance of being served. In this case A, = A and

fn = T
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Example 3. Population Model. Imagine that the state of the chain repre-
sents the number of individuals in a population. Each individual at a certain
rate A produces another individual. Similarly each individual dies at rate p.
If all the individuals act independently this can be modelled by a birth-and-
death process with A, = n\ and p, = nu. Note that 0 is an absorbing state
in this model. When p = 0, this is sometimes called the Yule process.

Example 4. Population Model with Immigration. Assume that indi-
viduals die and reproduce with rates u and A, respectively, as in the previous
model. We also assume that new individuals arrive at a constant rate v. This
gives a birth-and-death process with A,, = nA + v and u, = npu.

Example 5. Fast-Growing Population Model. Imagine that a popula-
tion grows at a rate proportional to the square of the number of individuals.
Then if we assume no deaths, we have a process with A\, = n2X and p, = 0.
The population in this case grows very fast, and we will see later that it
actually reaches an “infinite population” in finite time.

We will look more closely at all of these examples, but first we develop some
general theory. We call the birth-and-death chain irreducible if all the states
communicate. It is not very difficult to see that this happens if and only if
all the A, (n > 0) and all the u, (n > 1) are positive. An irreducible chain
is recurrent if one always returns to a state; otherwise, it is called transient.
For any birth-and-death process, there is a discrete-time Markov chain on
{0,1,2,...} that follows the continuous-time chain “when it moves.” It has
transition probabilities

An
Pn + An i

fin

p(n,n—1)= ———,
( ) Hn + An

p(n,n+1)=
One can check that the continuous-time chain is recurrent if and only if the
corresponding discrete-time chain is recurrent. Let a(n) be the probability
that the chain starting at state n ever reaches state 0. Note that a(0) = 1 and
the value of a(n) is the same whether one considers the continuous-time or
the discrete-time chain. From our discussion of discrete-time chains, we see
that a(n) satisfies

a(n)(pn +An) =a(n — 1) pp +an+1) Ay, n>0. (3.10)

If the chain is transient, a(n) — 0 as n — oo. If the chain is recurrent, no
solution of this equation will exist with a(0) = 1,0 < a(n) < 1,a(n) — 0 (n —
00).

We now give a necessary and sufficient condition for a birth-and-death chain
to be transient. We will try to find the function a(n). Equation (3.10) can be
rewritten

a(n) —a(n+1) = ‘;—" [a(n—1) —a(n)], n>1.

n
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If we continue, we get

a(n) —a(n +1) = H [a(0) — a(1)].

Hence,
a(n+1) = [a(n+ 1) — a(0)] + a(0)

=Yl +1) = a(G)] +1

=0

_ _ n ulcooﬂj
= [a(1) 1];0——)\1“./\‘ + 1,

J

where the j = 0 term of the sum equals 1 by convention. We can find a
nontrivial solution if the sum converges. We have established the following.

Fact. The birth-and-death chain is transient if and only if

o0
f - pin

N < 00. (3.11)

n=1

As an example, consider the queueing models (Example 2). For the M/M/1
queue,

which converges if and only if 4 < A. Consider now the M /M /k queue. For
any n >k,

i K (k"
DYREED VY LD ’

Therefore, in this case the sum is finite and the chain is transient if and only
if kp < A. Finally for the M /M /oo queue,

2 H = ;n! (—';f)n = 00.

Hence, for all values of p and A the chain is recurrent. These three results can
be summarized by saying that the queueing models are transient (and hence
the lines grow longer and longer) if and only if the (maximal) service rate is
strictly less than the arrival rate.
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For recurrent chains, there may or may not be a limiting probability. Again,
we call an irreducible chain positive recurrent if there exists a probability
distribution 7(n) such that

tlim P{X: =n| Xo = m} = n(n).

for all states m. Otherwise a recurrent chain is called null recurrent. If the
system is in the limiting probability, i.e., if P,(t) = m(n), where P,(t) is as in
(3.9), then P} (¢) should equal 0. In other words 7 should satisfy

0=X1m(n—1)+ pns1 7(n+1) — (An + pn) m(n). (3.12)

Again, as for the case of discrete-time chains, we can find 7w by solving these
equations. If we can find a probability distribution that satisfies (3.12), then
the chain is positive recurrent and that distribution is the unique equilibrium
distribution.

We can solve (3.12) directly. First, the equation for n = 0 gives

_ Do
n(1) = 227 (0).

For n > 1, the equation can be written
i1 70+ 1) = Ay 7(1) = pin 7(1) = Ay (0 — 1),
If we iterate this equation, we get
Pnp1T(n+1) — Ay m(n) = py m(1) — Ao w(0) = 0.
Hence, m(n + 1) = (An/pn+1) 7(n), and by iterating we get the solution
Ao Aot

17 Pn

w(n) =

(0).

We now impose the condition that 7 be a probability measure. We can arrange
this if and only if )~ 7(x) < co. We have established the following.

Fact. A birth-and-death chain is positive recurrent if and only if

o0

)\0"')\71—1
q= —— <
D

n=0

(by convention, the n = 0 term in this sum is equal to 1). In this case the
invariant probability is given by

m(n) = 22 2nml -t (3.13)
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As an example, consider the queueing models again. For the M/M/1 queue,

s Aot Ano1 > é "__ _ﬂ -1
nz::o P pin _:L:f)<u) _(1 u) ’

provided A < p and is infinite otherwise. Hence this chain is positive recurrent
for A < p in which case the equilibrium distribution is

w2 ()"

Note that the expected length of the queue in equilibrium is

S £ (-3 () -2 0-2) -

n=0

In particular, the expected length gets large as A approaches p. In the case
of the M/M/k queue, the exact form of 7 is a little messy, but it is easy to
verify that the chain is positive recurrent if and only if A < ku. Finally for
the M /M /oo queue,

i)\o-..)\n_l zil<é)n:e)\/#
n=0 K1 bin n=0n! H

Hence, the chain is positive recurrent for all A, 4 and has equilibrium distri-
bution

m(n) = e~ MH ——()\{:'L)n

b

i.e., the equilibrium distribution is a Poisson distribution with parameter A/p.
The mean queue length in equilibrium is A/p.

Conditions under which the population models are positive recurrent, null
recurrent, or transient are discussed in Exercises 3.12 and 3.13.

We finish by considering two pure birth processes. A birth-and-death pro-
cess is a pure birth process if u, = 0 for all n. We first consider the Yule
process with A\, = nA. Let us assume that the population starts with one indi-
vidual; hence, P(0) =1, P,(t) = 0 (n > 1), where again P,(t) = P{X; = n}.
The P,(t)s satisfy the differential equations

P.t)=(n—1)APy_1(t) —nAPy(t), n>1.

One can solve these equations recursively, but since the computations are a
little messy, we will skip them and simply state that the solution is

Pty =e M1 —e 71 n>1.
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(It is not too difficult to verify that P,(t) defined as above does satisfy these
equations.) The form for P, (t) is nice; in fact, for a fixed ¢, X; has a geometric

distribution with parameter p = e~**. This allows us immediately to compute
the expected population size at time t,

Xt) = io:npn(t) =

We could derive this last result in a different way. Let f(¢) = E (X;). Then

o0
= ZnP,’l

Pﬁ

[(n— 1D)AP,_1(t) — nAP,(t)]

f:wu Af(t).

Therefore, f(t) satisfies the standard equation for exponential growth and the
initial condition f(0) = 1 immediately gives the solution f(t) = e**. There is
one other way we can look at the Yule process. Consider the time Y,, when
the population first reaches n, i.e.,

Y, = inf{t: X; =n}.

Then Y,, =T, +---+T,_1, where T; measures the time between the arrival of
the ith and (z+ 1)st individual. The random variables T; are independent and
T; has an exponential distribution with parameter i\. In particular E (T;) =
1/(iX) and Var(T;) = 1/(i)\)%. Therefore,

n—1

o =33

Also Var(Y,,) < >°02,(iA\)™2 < oco. Hence, Y, equals Inn/X up to a small
random error which is bounded as n gets large. If it takes time Inn /) to reach
a population of n individuals, then in time ¢t we would expect e*t individuals.
Now consider the fast-growing population model, Example 5, with A, =
n?). Again let us consider Y,, the time until the nth individual enters the
population. In this case, an interesting phenomenon occurs. Consider

Yoo =Ti+To+ T3+

Then

B(Ye) =3 B(T) =3 oy < oo

In particular, with probability 1, Yoo < oo! This says that in finite time
the population grows to an infinite size. This phenomenon is often called
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ezplosion. For a pure birth process, explosion occurs if and only if E (V) <
00, i.e., if and only if

o0
Z At < o0
n=1

3.4 General Case

Suppose we have a countable (perhaps infinite) state space S and rates
a(z,y) denoting the rate at which the state is changing from z to y. Suppose
for each z,

a(r) = Za(m,y) < 00.

y#£T

Then we can use the “exponential alarm clocks” at each state in order to
construct a time-homogeneous, continuous-time Markov chain X; such that
for each x # y,

P{Xt1ae =y | X¢ = 2} = a(z,y) Al + 0z(At).

Here we write 0;(-) to show that the size of the error term can depend on the
state z. If the rates a are not bounded, it is possible for the chain to have
explosion in finite time as was seen in the case of the fast-growing population
model in Section 3.3. Let us assume for the time being that we have a chain for
which explosion does not occur (it is sometimes difficult to determine whether
or not explosion occurs).

We will consider the transition probabilities

pi(z,y) =P{X; =y | Xo =2} =P{Xpys =y | Xs; =2}

To derive a differential equation for the transition probabilities in the same
manner as in the previous sections, we write

perae(@,y) = pe(@, v)par (W, y) + Y pr(z, 2)pac(z,y)
2#yY

= pi(z,y)[1 — a(y) At + oy (At)]

+3 pila, 2)la(z, y)At + 0.(A)]
z#y

= pi(z,y)[1 — a(W) A + D pi(x, 2)a(z,y) At
z#y

+ Zpt(x, z)oz(At).
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If we can combine the last error term so that

Zpt(a:,z)oz(At) = o(At), (3.14)

then we can conclude that the transition probabilities satisfy the system of
equations

pi(e,y) = —a(y)p(z,y) + > alz,9)pi(x, 2),
z#y

where the derivative is with respect to time. These are sometimes called
the forward equations for the chain. In most cases of interest, including all
the examples in the first three sections, (3.14) can be justified. There are
examples, however, where the forward equations cannot be justified.

There is another set of equations called the backward equations which always
hold. For the backward equations we write

peeae(@y) = Y par(a, 2)pi(2,y)

= Z[a(l‘, Z)At + Oz(At)]pt(z, y)
Z#T

+ [1 = a(z)At + 0. (At)|pe(z, y).

The error term depends only on z. With a little work one can show that one
can always take the limit as At goes to 0 and get

pi(z,y) = —a(@)pi(z,y) + 3 alz, 2)pi(z ).
z#x

In the case of a finite state space with infinitesimal generator A, the back-
ward equations for the transition matrix P; becomes in matrix form

d
—P, = AP
dt t ty

which can be compared to the forward equation (3.8). Both equations (with
initial condition Py = I) have the solution

Pt = etA.

3.5 Exercises

3.1 Suppose that the number of calls per hour arriving at an answering
service follows a Poisson process with A = 4.
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(a) What is the probability that fewer than two calls come in the first hour?

(b) Suppose that six calls arrive in the first hour. What is the probability
that at least two calls will arrive in the second hour?

(c) The person answering the phones waits until fifteen phone calls have
arrived before going to lunch. What is the expected amount of time that the
person will wait?

(d) Suppose it is known that exactly eight calls arrived in the first two
hours. What is the probability that exactly five of them arrived in the first
hour?

(e) Suppose it is known that exactly k calls arrived in the first four hours.
What is the probability that exactly j of them arrived in the first hour?

3.2 Let X; and Y; be two independent Poisson processes with rate param-
eters A\; and Ag, respectively, measuring the number of customers arriving in
stores 1 and 2, respectively.

(a) What is the probability that a customer arrives in store 1 before any
customers arrive in store 27

(b) What is the probability that in the first hour, a total of exactly four
customers have arrived at the two stores?

(c) Given that exactly four customers have arrived at the two stores, what
is the probability that all four went to store 17

(d) Let T denote the time of arrival of the first customer at store 2. Then
X7 is the number of customers in store 1 at the time of the first customer
arrival at store 2. Find the probability distribution of X7 (i.e., for each k,
find P{X1 = k}).

3.3 Suppose X; and Y; are independent Poisson processes with parameters
A1 and ), respectively, measuring the number of calls arriving at two different
phones. Let Z; = X; +Y;.

(a) Show that Z; is a Poisson process. What is the rate parameter for Z7

(b) What is the probability that the first call comes on the first phone?

(c) Let T denote the first time that at least one call has come from each
of the two phones. Find the density and distribution function of the random
variable T'.

3.4 Let A be the infinitesimal generator for an irreducible, continuous-time
Markov chain with finite state space. Then the rows of A add up to 0 and
the nondiagonal elements of A are nonnegative.

(a) Let a be some positive number greater than all the entries of A. Let
P = (1/a)A + 1. Show that P is the transition matrix for a discrete-time,
irreducible, aperiodic Markov chain.

(b) Use this to conclude: A has a unique left eigenvector with eigenvalue 0
that is a probability vector and all the other eigenvalues of A have real part
strictly less than 0.



84 Introduction to Stochastic Processes

3.5 Let X; be a Markov chain with state space {1,2} and rates a(1,2) =
1,a(2,1) = 4. Find P,.

3.6 Repeat Exercise 3.5 with state space {1, 2, 3} and rates a(1,2) = 1, a(2, 1)
4,0(2,3) =1,0(3,2) = 4,(1,3) = 0,(3,1) = 0.

3.7 Let X; be an irreducible, continuous-time Markov chain. Show that for
each 4, j and every t > 0,

P{X,=j|Xo=1i}>0.

3.8 Consider the continuous-time Markov chain with state space {1,2,3,4}
and infinitesimal generator

1 2 3 4
11-31 1 1
21 0 -3 2 1

A= 3l 1 2 -4 1
4] 0 0 1 -1

(a) Find the equilibrium distribution 7.

(b) Suppose the chain starts in state 1. What is the expected amount of
time until it changes state for the first time?

(c) Again assume the chain starts in state 1. What is the expected amount
of time until the chain is in state 47

3.9 Repeat Exercise 3.8 with

1 2 3 4

1{-21 1 0
21 0 =11 0
A_311—31
4 0 0 1 -1

3.10 Suppose « gives the rates for an irreducible continuous-time Markov
chain on a finite state space. Suppose the invariant probability measure is .
Let

p(z,y) = a(z,y)/a(z), z#vy,

be the transition probability for the discrete-time Markov chain corresponding
to the continuous-time chain “when it moves.” Find the invariant probability
for the discrete-time chain in terms of 7 and a.

3.11 Let X; be a continuous-time birth-and-death process with birth rate
An =1+4(1/(n+1)) and death rate u,, = 1. Is this process positive recurrent,
null recurrent, or transient? What if A, =1 — (1/(n + 2))?
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3.12 Consider the population model (Example 3, Section 3.3). For which
values of pu and A is extinction certain, i.e., when is the probability of reaching
state 0 equal to 1?7

3.13 Consider the population model with immigration (Example 4, Section
3.3). For which values of p, A, v is the chain positive recurrent, null recurrent,
transient?

3.14 Consider a birth-and-death process with A, = 1/(n + 1) and p, = 1.
Show that the process is positive recurrent and give the stationary distribu-
tion.

3.15 Suppose one has a deterministic model for population where the popu-
lation grows proportionately to the square of the current population. In other
words, the population p(t) satisfies the differential equation

P o,

for some constant ¢ > 0. Assume p(0) = 1. Solve this differential equation
(by separation of variables) and describe what happens as time increases.

3.16 Consider a birth-and-death process with birth rates A, and death rates
in. What are the backward equations for the transition probabilities p;(m, n)?






Chapter 4

Optimal Stopping

4.1 Optimal Stopping of Markov Chains

Imagine the following simple game. A player rolls a die. If the player rolls
a 6 the player wins no money. Otherwise, the player may either quit the game
and win k dollars, where k is the roll of the die, or may roll again. If the
player rolls again, the game continues until either a 6 is rolled or the player
quits. The total payoff for the game is always k dollars, where k is the value
of the last roll (unless the roll is a 6 in which case the payoff is 0). What is
the optimal strategy for the player?

In order to determine the optimal strategy, it is necessary to decide what
should be optimized. For example, if the player only wants to guarantee that
the payoff is positive, then the game should be stopped after the first roll—
either the player has already lost (if a 6 is rolled) or the player can guarantee
a positive payoff by stopping. However, it is reasonable to consider what
happens if the player decides to maximize the expected payoff. Let us analyze
this problem and then show how this applies to more general Markov chain
problems.

We first let f(k) denote the payoff associated with each roll. In this example
f(k) =k if k <5and f(6) =0. We let v(k) be the expected winnings of the
player given that the first roll is k assuming that the player takes the optimal
strategy. At this moment we may not know what the optimal strategy is, but
it still makes sense to discuss v. We will, in fact, write down an equation that
v satisfies and use this to determine v and the optimal strategy. We first note
that v(6) = 0 and v(5) = 5. The latter is true since it clearly does not pay to
roll again if the first roll is 5, so the optimal strategy is to stop and pick up
$5. It is not so clear what v(k) is for k < 4.

Now let u(k),k < 5 be the amount of payoff that is expected if the player
does not stop after rolling a k, but from then on plays according to the optimal
strategy. [In this particular example, u(k) is actually the same for all k.] Then
it is easy to see that

u(k) = o(1) + 50(2) + go(3) + guld) + 5u(5) + Z0(6).

We now can write the optimal strategy in terms of u(k)—if f(k) > u(k), the

87
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player should stop and take the money; if f(k) < u(k), the player should roll
again. In other words,

v(k) = max{f(k), u(k)}.

In particular, v(k) > f(k). This fact implies that u(k) > (f(1) +--- +
f(6))/6 = 5/2. We now know more about the optimal strategy—if the first
roll is a 1 or a 2 the player should roll again. Hence,

v(1)+---+v(6)  v(l)4---+v(4)
6 N 6

5
1) = Z
v(1) T

6 6

Suppose the first roll is a 4. Suppose that the optimal strategy were to
continue playing. Then clearly that would also be the optimal strategy if the
first roll is a 3. Under this strategy, the game would continue until a 5 or a 6 is
rolled and each of these ending rolls would be equally likely. This would give
an expected payoff of (5+0)/2 = 5/2, which is less than 4. Hence this cannot
be the optimal strategy starting with a 4. The player, therefore, should stop
with a 4 and v(4) = f(4) = 4. We finally consider what happens if the first
roll is a 3. Suppose the player rolls again whenever a 3 comes up and uses

the optimal strategy otherwise. Let u be the expected winnings in this case.
Then

1 1 1 1 1
u = P{roll §3}u+64+65— 2u+64+65'
Solving for u we get u = 9/3. Since this equals f(3), the expected payoff for
playing is the same as for stopping and v(3) = 3. With these values, we can
solve for v(1) and v(2), getting v(1) = v(2) = 3. The optimal strategy is to
play if the first roll is 1 or 2; stop if the first roll is 4, 5, 6; and either play or
stop if the first roll is a 3.

We now generalize these ideas. Suppose P is the transition matrix for a
discrete-time Markov chain X,, with state space S. For ease we will assume
that S is finite, but much of what follows can be applied to the infinite state
space case. Assume there is a payoff function f that assigns to each state the
payoff if the chain is stopped when it reaches that state. In cases of interest,
P will not be irreducible since otherwise one could always continue until one
reached the state that has the maximum payoff. A stopping rule or stopping
time will be a random variable T" that gives the time at which the chain is
stopped. It is important that one must decide whether or not to stop based
only on what has happened up through step n; in other words, one cannot
look into the future to decide whether or not to stop. Because we are dealing
with a time-homogeneous Markov chain it does not take too much work to
convince oneself that the only reasonable stopping rules that do not look into
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the future are of the following form: the state space is divided into two sets
S1 and Sy; if the state of the chain is in S; one continues, if it is in Sy it
stops. The goal is to maximize the expected payoff over all stopping rules.

We let v(z) be the value of a state z, i.e., the expected payoff assuming that
the optimal stopping strategy is used. We can write

v(z) = max E [f(XT) | Xo = 2],

where the maximum is over all legal stopping rules.
There are two main inequalities that v satisfies. First, v is greater than or
equal to the payoff available by stopping,

v(z) > f(z). (4.1)

Second, v is greater than or equal to the maximum expected payoff if one
continues,

v(z) > Py(z) = Zp(x,y)v(y). (4.2)

yeS

In fact, v is equal to the maximum of these values:

v(z) = max{f(z), Pu(z)}. (4.3)

If we let S; be the set of states where one continues and Sy the set of states
where one stops (assuming the optimal strategy), and we let

T =min{j > 0: X; € S},
then
v(z) =E [f(X7) | Xo =2].

We will characterize the function v. We call a function u superharmonic
with respect to P if it satisfies (4.2), i.e.,

u(z) > Pu(z).

Suppose u is superharmonic and T is the time associated to a stopping rule
as above. Consider the time T,, = min{T,n} We claim that

wz) > E [u(Xt,) | Xo =x].

To see this, note that it is trivially true for n = 0. Assume it is true for n — 1.
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Then

E[u(XT,) | Xo = 7]

= ZIP’{XTn =y | Xo==z}u(y)
yeS

= z Z]P){XTn = y | XTn—l = Z} IP{XTn—l ==z | XO = x} U(y)
y€ES z€S

= Z Z]P’{XT" =y| Xr,_, =2}P{Xr, , =2 | Xo=z}u(y) +
zE€Sy y€S

oS P{Xr, =y | Xr,_, =2} P{Xr,_, = 2| Xo =z} u(y).
2€851 y€S

If 2 € Sy, then P{X7, = z | X1,_, = 2} = 1 and hence the first double sum
in the last expression equals

> P{Xr,_, = 2| Xo =z} u(2).

z€ Sy

If 2€ S, P{Xr, =y | Xr,_, = 2} = p(2,y) and hence

Y P{Xz, =yl Xz, , = z}u(y) = Pu(z) < u(2).
yeS

Hence,

Eu(Xr,) | Xo=2] <> P{Xr,_, =z | Xo =z} u(2)
z€S
= E[uw(Xr,_,) | Xo = z] < u(z).

Since u is a bounded function, we can let n — oo and get

u(z) > lim Eu(Xr,) | Xo=2] =E[u(Xr) | Xo = z|.

n—00
Now suppose that u(z) > f(z) for all z. Then
u(z) = E[u(X7) | Xo = 2] > E[f(X7) | Xo = 2] = v().
Hence every superharmonic function that is larger than f is greater than or
equal to the value function v. Also we note (see Exercise 4.7) that if {u;(z)}
is any collection of superharmonic functions, then

u(z) = irilf u; ()

is also superharmonic. We have derived the following.
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Fact. v is the smallest superharmonic function with respect to P that is
greater than equal to f; equivalently,

v(z) = inf u(x),
where the infimum is over all superharmonic functions u with u(z) > f(z).

The characterization leads to an algorithm for determining v. Start with
the function u;(z) that equals f(x) if z is an absorbing state and otherwise
equals the maximum value of f. This gives a superharmonic function that is
greater than f. Let

uz(z) = max{Pu;(z), f(z)}.
Since w; is superharmonic and u; > f, us(z) < uy (). Also,
Pus(z) < Pug(z) < up(x).
Hence, us is a superharmonic function greater than f. Continuing, we define
un(z) = max{Pun_1(z), f(2)},

and we see that u, is a superharmonic function greater than f but less than
Uy—1. We will show at the end of this section that

v(z) = nan;o Un ().

Example 1. If we consider the game that we already analyzed and started
with the function u = [5,5, 5, 5,5, 0], then in 10 iterations we would see u;g =
[3.002, 3.002, 3.002, 4, 5, 0].

Example 2. Suppose X, is a simple random walk (p = 1/2) with absorbing
barriers on {0,1,2,3,4,5,6}. Let the payoff function f be given by f =
[0,2,4,5,9,3,0] (we write the payoff function as a vector in a natural way).
We will first determine the optimal strategy. Clearly one stops at state 4 and
one has to stop at 0 and 6. From state 5 there is a probability 1/2 of going
to 4 and 1/2 of going to 6; the expected payoff given that we continue is at
least 9/2 > f(5) = 3, so from 5 we continue. If one starts in state 3, then
one can get an expected payoff of (4 +9)/2 = 13/2 by taking one step and
then stopping. Since this is greater than f(3) = 5, it must be optimal to
continue from state 3 and v(3) > 13/2. Note that from state 2 playing gives
an expected payoff of at least [f(1) + v(3)]/2 > 17/4 > f(2) = 4. Hence,
we continue on state 2 and v(2) > 17/4. Similarly, if one continues from
state 1 we can obtain an expected payoff of v(2)/2 > 17/8 > f(1) = 2, so
the optimal strategy is to continue. Therefore the stopping set in this case is
S2 = {0,4,6}. The value function can be obtained by

’U(.’L‘) :]E[f(XT) | XOZCL‘] :9]P{XT=4|X0 :11‘}.
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The probability has been computed before [see (1.16)] and we get
9 9 2 9
v = |:07 Zv 57 7797 570
In the graph below the solid line represents f and the dotted line represents

v. For simple random walk, the superharmonic functions are the concave
functions. The function v is the smallest concave function satisfying v > f.
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In this example, if we had started with the function u; = [0,9,9,9,9,9,0]
and performed the algorithm above we would have gotten within .01 of the
actual value of v in about 20 iterations.

In solving the optimal stopping problem we simultaneously compute the
value function v and the optimal stopping strategy. Suppose that we knew
the strategy that we would choose, i.e., we split the state space into two sets
S; and S so that we continue on S; and stop on Ss. Let u(z) be the expected
payoff using this strategy. Then u satisfies:

u(z) = f(z), z€ S, (4.4)

u(z) = Pu(z), z € 5. (4.5)

This is a discrete analogue of a boundary value problem sometimes called the
Dirichlet problem. The boundary is the set Ss where prescribed values are
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given. On the “interior” points S;, some difference equation holds. As we
have seen the probabilistic form of the solution of this system can be given by

u(z) = E[f(X7) | Xo = ],
where
T=min{j ZOX] (S SQ}

For a finite-state Markov chain, the solution can be found directly because
(4.4) and (4.5) give k linear equations in k unknowns, where k is the number
of points in S; and the unknowns are u(z),z € S;.

We now verify that the algorithm does converge to the value function v.
Let u(z) = limy 00 un(2). Since u is the decreasing limit of superharmonic
functions, u is superharmonic (see Exercise 4.7). Also u(z) > f(z) for all 2.
Hence by the characterization of v, we get

u(z) > v(z). (4.6)
Let the stopping set S, be defined by
S2 = {z:u(z) = f(2)},

S1={z:u(z) > f(2)}.

On Si, Pu(z) = u(z) (if Pu(z) < u(z), then for some n, Pu,(z) < u(z) <
un(z) and hence up41(z) = max{Pun(z), f(2)} < u(z) which is impossible).
Therefore,

u(z) = E[u(X7) | Xo = 2],

where T is the strategy associated with the sets S;,S2. Since v(z) is the
largest expected value over all choices of stopping sets,

u(z) < v(z). (4.7)

Combining (4.6) and (4.7) we see that u(z) = v(z) for all z.

4.2 Optimal Stopping with Cost

Consider the first example of the previous section, and suppose that there
is a charge of $1 for each additional roll, i.e., on each roll we can either take
the payoff associated with that roll or pay $1 and roll again. In general, we
can assume that there is a cost g(z) associated with each state that must be
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paid to continue the chain. As before we assume we have a payoff function f
and we let v(z) be the expected value of the payoff minus the cost assuming
a stopping rule is chosen that maximizes this expected value. We can write

~

-1
v($)=m1§X]E f(Xr) =) 9(X;)| Xo=2z|,
J

Il
=)

where again the maximum is over all legal stopping times 7. Then v(z)
satisfies:

v(z) = max{f(z), Pv(z) — g(z)}.

Here, the expected payoff minus cost if the chain is continued is Pv(z) — g(z).
Again we can divide S into S; and Sy where

Sy = {z :v(x) = f(z)},

and the optimal stopping rule is to stop when the chain enters a state in Ss.

Using a similar argument as in Section 4.1, the value function v for this
example can be characterized as the smallest function u greater than f that
satisfies

u(z) = Pu(z) — g(z).
In other words,
v(z) = inf u(z),

where the infimum is over all u satisfying u(z) > f(z) and u(z) > Pu(z) —
g(z). To find the value function, we may use an algorithm similar to that in
Section 4.1. We define u; to be the function that equals f on all absorbing
states and equals the maximum value of f everywhere else. We then define

un(x) = max{f(x),Pun_l(x) - g(a:)},
and then

v(z) = lim u,(x).

n—oo

Example 1. Suppose we consider the die game with f = [1,2,3,4,5,0] and
g=1[1,1,1,1,1,1]. The cost function makes it less likely that we would want
to roll again, so it is clear that we should stop if we get a 4 or a 5; similarly,
we should stop if we get a 3 since we were indifferent before with this roll
and it costs to roll again. If we get a 1, then by rolling again we can get an
expected payoff of at least 5/2 with a cost of 1. Hence we can expect a net
gain of at least 3/2. Therefore we should play if we get a 1.
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Suppose we roll again whenever we get a 1 or 2 and stop otherwise. Let
u(k) be the expected winnings with this strategy. Then u(1) = u(2) = u and
u(k) =k, k = 3,4,5. Also,

1 1 1 1 1 1 1
2) = -u(l —u(2 —u(3) + zu(4) + zu(d) + zu(6) -1 = = 1.

u(2) 6u()-+—6u()—l—6u()—I—6u()+6u()-+-6u() 3u+
Solving for u gives u = 3/2. Since this is less than f(2) = 2, it must be
correct to stop at 2. Hence the stopping set is So = {2,3,4,5,6} and the
value function is

v =[8/5,2,3,4,5,0].

If we started with the initial u; = [5,5,5,5,5,0] and performed the algo-
rithm described above, then after only a few iterations we would have

U0 = [16, 2, 3, 4, 5, 0]

Example 2. Consider the other example of the previous section where X,
is a simple random walk with absorbing boundary on {0,1,...,6} and f =
[0,2,4,5,9,3,0]. Suppose we impose a cost of .5 to move from states 0, 1,2
and a cost of 1 to move from 3,4, 5,6, i.e., a cost function

g=1[5,.5,.511,1,1].
If we start with initial u; = [0,9,9,9,9,9,0], then in only six iterations we get
ue = [0,2,4,5.5,9,3.5,0],
which gives the value for v. In this case the stopping set is S2 = {0,1,2,4,6}.

Example 3. With a cost function, it is possible to have a nontrivial problem
even if the Markov chain is irreducible. Suppose we play the following game:
roll two dice; the player may stop at any time and take the roll on the dice
or the player may pay 2 units if the roll is less than 5 and 1 unit if the roll
is greater than or equal to 5 and roll again. In this case the state space is
{2,3,4,...,12},

f=10234,...,12], ¢g=1[2,2,21,1,...,1]

If we start with the initial guess u; = [12,12,... ,12] then within 20 iterations
we converge to the value function v,

2 2 2 2 2
v = [53,55,55,65,63,7,8,9, 10, 11,12]

The stopping set is So = {7,8,...,12}.
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4.3 Optimal Stopping with Discounting

It is often appropriate in modelling financial matters to assume that the
value of money decreases with time. Let us assume that a discount factor
a < 1 is given. By this we mean that 1 dollar received after one time unit is
the the same as « dollars received in the present. Again suppose we have a
Markov chain X,, with transition matrix P and a payoff function f. It is now
the goal to optimize the expected value of the payoff, taking into consideration
the decreasing value of the payoff. If we stop after k steps, then the present
value of the payoff in k steps is o time the actual payoff.

In this case the value function is given by

v(z) = mpﬁx]E[an(XT) | Xo =z,

where again the maximum is over all legal stopping rules. To obtain this value
function, we characterize v as the smallest function u satisfying

u(z) = f(x),

u(z) > oPu(zx).

We may obtain v with a similar algorithm as before. Start with an initial
function u, equal to f at all absorbing states and equal to the maximum
value of f at all other states. Then define u,, recursively by

un () = max{f(z),aPu,_1(x)}.
Then

v(z) = nan;o Un ().

Example 1. Consider the die game again. Assume a discounting factor of
a = .8. Since discounting can only make it more likely to stop it is easy to
see that one should stop if the first roll is a 3,4, or 5. If the first roll is a 1,
one can get an expected payoff of at least .8[(1 +2+ 3+ 4+ 5)/6] = 2 by
rolling again, so it is best to roll again. Suppose we use the strategy to roll
again with a 1,2 and to stop otherwise and let u be the expected winnings
given that one rolls again. Then

w=g (Lt 34,0
T \6 6 6 6 6/

Solving for u we get u = 24/11 > 2 so it must be optimal to roll again with a
2. Therefore S; = {3,4,5,6} and

_[m 24

—, —, 3,45 .
117117 ? ) 7OJ
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Example 2. Consider the example of a simple random walk with absorbing
boundaries on {0,1,...,6} and f = [0,2,4,5,9,3,0]. Suppose that there is
no cost function, but the value of money is discounted at rate o = .9. If we

start with u; = [0,9,9,9,9,9,0] then in seven iterations we converge to the
value

ur = [0,2,4,5.85,9,4.05,0].
This stopping set is {0,1,2,4, 6}.

It is possible to include both a cost function and a discounting factor. Sup-
pose in addition to the other assumptions in this section, we have a cost
function g(x) that indicates the cost of taking a step given that the chain is
in state z. Then the value function v is the smallest function u satisfying

u(z) > f(z),

u(z) > aPu(z) - g(x),

Example 3. Consider the random walk with absorbing boundaries de-
scribed before with f = [0,2,4,5,9,3,0] and with both the cost function
g = [5,.5,.5,1,1,1,1] and the discount factor @ = .9. If we start with
u1 =10,9,9,9,9,9,0] then in only three iterations we converge to

v =[0,2,4,5,9,3.05,0].
The stopping set is {0,1,2,3,4,6}.
Example 4. Consider a random walk with absorbing boundaries on the
state space {0,1,...,10}. Suppose the payoff function is the square of the
site stopped at, i.e.,

f=100,1,4,5,9,...,100].

We assume that there is a constant cost of .6 and a discounting factor of
a = .95. We then start with the initial guess

u; = [0, 100,100, 100, ... , 100]
and after 60 iterations we get
ueo = [0,1.51,4.45,9.11, 16, 25, 36, 49, 64, 81, 100].

The stopping set is {0,4,5,6,...,10}.
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4.4 Exercises

4.1 Consider a simple random walk (p = 1/2) with absorbing boundaries on
{0,1,2,...,10}. Suppose the following payoff function is given

[0,2,4,3,10,0,6,4,3,3,0].

Find the optimal stopping rule and give the expected payoff starting at each
site.

4.2 The following game is played: you roll two dice. If you roll a 7, the game
is over and you win nothing. Otherwise, you may stop and receive an amount
equal to the sum of the two dice. If you continue, you roll again. The game
ends whenever you roll a 7 or whenever you say stop. If you say stop before
rolling a 7 you receive an amount equal to the sum of the two dice on the last
roll. What is your expected winnings: a) if you always stop after the first roll;
b) if you play to optimize your expected winnings?

4.3 Consider Exercise 4.1. Do the problem again assuming:
(a) a constant cost of .75 for each move;
(b) a discount factor a = .95;
(c) both.

4.4 Consider Exercise 4.2. Do the problem again assuming:
(a) a cost function of g = [2,2,2,2,1,1,1,1,1,1,1];
(b) a discount factor o = .8;
(c) both.

4.5 Consider a simple random walk on the following four-vertex graph.
A B

D C

Assume that the payoff function is: f(A) =2, f(B) =4, f(C) =5, f(D) =
3. Assume that there is no cost associated with moving, but there is a discount
factor a. What is the largest possible value of a so that the optimal stopping
strategy is to stop at every vertex, i.e., so that So = {A, B,C, D}?

4.6 Consider the following simple game. You roll a single die. If it comes up
1 you lose. If it comes up k > 1, you can either take a payoff of k2 or you can
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play again. Hence, the final payoff is either 0 (if you roll a 1) or otherwise the
square of the value of your final roll.

(a) What is the optimal strategy in this game and what is the expected
winnings if one uses the optimal strategy?

(b) Suppose that it costs r to play the game each time. What is the smallest
value of r such that the optimal strategy is to play if one rolls a 2 and to stop
if one rolls any other number?

4.7 If uy(y), u2(y),. .. are all functions that are superharmonic at z for P,
ie.,

Pu;(z) < u;(x),
and we let u be the function

uly) = infui(y),
show that u is superharmonic at = for P.

4.8 Consider a simple “Wheel of Fortune” game. A wheel is divided into
12 equal-sized wedges. Eleven of the edges are marked with the numbers
100,200, ... ,1100 denoting an amount of money won if the wheel lands on
those numbers. The twelfth wedge is marked “bankrupt.” A player can spin
as many times as he or she wants. Each time the wheel lands on a numbered
wedge, the player receives that much money which is added to his/her previous
winnings. However, if the wheel ever lands on the “bankrupt” wedge, the
player loses all of his/her money that has been won up to that point. The
player may quit at any time, and take all the money he or she has won
(assuming the “bankrupt” wedge has not come up).

Assuming that the goal is to maximize one’s expected winnings in this game,
devise an optimal strategy for playing this game and compute one’s expected
winnings. You may wish to try a computer simulation first.

4.9 Suppose X, is random walk with absorbing boundary on {0,1,2,...}
with
1
p(n,m+1)=pn,n-1)= 3 > 1.

Suppose our payoff function is f(n) = n2. Let us try to find a stopping time
T that will maximize E [f(X7)].
(a) Show that if X,, > 0, then

E [f(Xn+l) | Xn] > f(Xn)

Conclude that any optimal strategy does not stop at any integer greater than
0.
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(b) Since the random walk is recurrent, we know that we will eventually
reach 0 at which point we stop and receive a payoff of 0. Since our “optimal”
strategy tells us never to stop before then, our eventual payoff in the optimal
strategy is 0. Clearly something is wrong here—any ideas?

4.10 We have been restricting ourselves to stopping rules 7" that do not look
into the future. Suppose we can look into the future so that we always know
when we reach the site that will have the highest payoff. Explain why the
expected payoff is

Vprop () :=E [my?.xf(Xn) | Xo = 9:] .

The subscript prop stands for “prophet.” Clearly vprop(z) > v(z).

(a) Find vprop for the die game discussed at the beginning of the chapter
(where the game stops whenever a 6 is rolled).

(b) Find vprop for the chain and payoff function in Exercise 4.1.



Chapter 5

Martingales

5.1 Conditional Expectation

To understand martingales, which are a model for “fair games,” we first need
to understand conditional expectation. We start with some easy examples and
build up to a general definition. Suppose Y is a random variable measuring
the outcome of some random experiment. If one knows nothing about the
outcome of the experiment, then the best guess for the value of Y is E (Y),
the expectation. Of course, if one has complete knowledge of the outcome of
the experiment, then one knows the exact value of Y. Conditional expectation
deals with making the best guess for Y given some but not all information
about the outcome. We will start by discussing the conditional expectation
of a random variable Y with respect to a finite number of random variables
Xi,...,X, and then finish by discussing the conditional expectation with
respect to an infinite number of random variables.

Suppose that X and Y are discrete random variables with joint probability
density function

flz,y) =P{X =2,Y =y}

and marginal probability density functions

fx@) = fy), fr)=_ flzy.

To define the conditional expectation of Y given X, E(Y | X) we need to
give the best value of Y for any value of . A little thought will show that we
should define

E(Y | X)(x)=Y yP{Y =y| X =z}

B P{X =2z,Y =y}
- ;y P{X =z}

v flay)
o fx(@)

101
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This is well defined if fx (z) > 0, and we do not bother to define E(Y | X)(z)
for other values of z since such values occur with probability 0. As an example
suppose that two independent dice are rolled and X denotes the value of the
first roll and Y denotes the sum of the two rolls. Then

1
flz,y) = 3 %= ,2,...6, y=z+ 1,z +2,...2+ 6,
and
7
EY | X)(z)=z+ 3
Similarly, if X1,...,X,,Y are discrete random variables with joint proba-

bility density function
flze, ..., zn,y) =P{X1 =21,... , Xpn =2,,Y =y},

and the marginal density with respect to X1,..., X, is given by

9(1'17--- ,.’L‘n) = Zf(xla 7l'my)7
Yy

then the conditional expectation of Y given Xi,..., X, is given by

_ Zyyf(xlv 7xn7y)

E(Y | Xv,... . X)) (z1, .. 20
¥ X, » Xn) (@1 Zn) g(x1,. .. ,xy)

This is well defined if z,,... ,z, is a possible outcome for the experiment,
ie., if g(z1,... ,2,) > 0. Again, we think of E(Y | Xi,...X,,) as being the
best guess for the value of Y given the values of X1,...,X,.

If X and Y are continuous random variables with joint density f(z,y) and
marginal densities

oo oo
@ = [ e - [ ey ds
— 00 — 00
then the conditional expectation of Y given X is defined in an analogous way

[y f(zy)dy

fx(x)
which is well defined for fx(x) > 0. Similarly if X;,...X,,Y have joint
density f(z1,...,2Zn,y),

EY | X)(z) =

foo yf(I17~"aIn7y)dy
EY | X1,....X)(x1,... ,2,) = —= .
( I ! n)( ! n) fxly-~-:xn(I1"" 7In)

The conditional expectation E(Y | Xi,...,X,) is characterized by two
properties:
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1. The value of the random variable E(Y | X1,..., X,) depends only on the
values of X1,...,X,, i.e.,, we can write E(Y | X1,...,X,) = ¢(X1,...,Xn)
for some function ¢. If a random variable Z can be written as a function of
X1,...,X, it is called measurable with respect to Xi,...,X,. (For those
who know measure theory, the function must be Borel measurable.)

2. Suppose A is any event that depends only on X1,..., X,. For example,
A might be the event

Az{alSXISblw--?anSXnSbn}-

Let I4 denote the indicator function of A, i.e., the random variable which
equals 1 if A occurs and 0 otherwise. Then

E(YI4) =E[E(Y | X1,...,Xn)Ia]. (5.1)

Let us derive the last equality in the case where X1,... , X,,Y are continuous
random variables with density f(x1,...,z,,y) and A is the above event; the
derivation for discrete random variables is essentially the same.

E[E(Y | X1,..., Xn)]A]

b1
:/ / / EY | Xi=21,...,Xn =)
ay

f(f'317-~~,xn,y)dyd:rn---dxl
. bn oo ([ zf (1, 20, 2) dz
z/a‘ /"" /‘Oo[f_oof(xh...,a:n,z)dz
f(Il,...,;rn,y)dydg;n...dxl

by br
:/ / / flxy,...,zpn, 2) dz dxy, - - - day

=E(Y1,).

Conditions 1 and 2 give a complete characterization of the conditional ex-
pectation.

Fact. E(Y | X1,...X,) is the unique random variable which depends only
on Xi,...,X, and which satisfies (5.1) for every event A that depends only
on Xi,...,Xn-

In measure theoretic treatments of probability, the conditional expectation
is defined as the random variable satisfying conditions 1 and 2 and then it
is proved that this uniquely defines a random variable (up to an event of
probability zero). For our purposes, the characterization will be useful in
deriving some properties of conditional expectation.

We will make the notation a little more compact. If X1, X, ... is a sequence
of random variables we will use F,, to denote the “information contained in
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X1,..., Xn.” We will write E(Y | F,) for E(Y | X1,...,X,). If we apply
(5.1) to the event A consisting of the entire sample space (so that I4 = 1) we
get

E[E(Y | Fo)] =E(Y). (5.2)
Conditional expectation is a linear operation: if a, b are constants, then
E(aY1 +bYs | Fp) =a E(Y1 | Fn) + bE(Y2 | F). (5.3)

To prove this, we need only note that the right-hand side is measurable with
respect to Xi,...,X, and satisfies (5.1). The next two properties can be
derived similarly. If Y is already a function of X1,..., X, then

EY | F,) =Y. (5.4)
For any Y, if m < n, then
E(E(Y | Fo) | Fm) = E(Y | Fi). (5.5)

If Y is independent of X,... , X,,, then information about X1, ..., X, should
not be useful in determining ¥ and

E(Y | F) =E(Y). (5.6)

This can be derived easily from (5.1) since in this case Y and I4 are indepen-
dent random variables. The last property we will need is a little trickier: if Y’
is any random variable and Z is a random variable that is measurable with
respect to X1,...X,, then

E(YZ|F,) = ZE(Y | ). (5.7)

It is clear that the right-hand side is measurable with respect to X1,..., X,,
so it suffices to show that it satisfies (5.1). We will not prove it here; the basic
idea is to approximate Z by simple functions, for which (5.1) can be derived
easily, and pass to the limit.

Example 1. Suppose X, X5,... are independent, identically distributed
random variables with mean p. Let S,, denote the partial sum

Sn=X1 4+ X

Let F,, denote the information in Xi,...,X,. Suppose m < n. Then by
(5.3),

E(SnIfm):E(X1+"'+Xm|~7:m)+E(Xm+1+"‘+Xn|~7:m)-
Since X; + - -+ + X, is measurable with respect to X1,..., X, by (5.4),

E(Xy 4+ Xm | Fn)=X1 4+ Xpm = Sp.
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Since Xm41 + - + X, is independent of Xi,... , Xm, by (5.6),
EXmp1+ -+ X | Fn) =E(Xpng1 + -+ Xp) = (R —m) p.
Therefore,

E(Sy | Fm) = S + (n—m) . (5.8)

Example 2. Suppose X1, X»,... and S, are as in Example 1. Suppose up =0
and Var(X;) = E (X?) = 02. Let m < n. Then, by (5.3),
E(STQL l Fm) = E([Sm + (Sn - Sm)]2 | Fn)
= E(ng | Fm) + 2E(Sm(sn — Sm) | }_m)
+ E((Sn — Sm)? | Fm)-

Since S,,, depends only on X1, ..., X,, and S,, —S,, is independent of X, ...,
X, we have as in the previous example

E(S}, | Fm) = Sh,

E((Sn = Sm)? | Fin) = E((Sn — Sm)?) = Var(S, — Sm) = (n —m) 0.
Finally, by (5.7),

E(Spn(Sn — Sm) | Fin) = Sm E(Sn — S | Fin) = SmE(Sn — Sm) = 0.
Therefore,

E(S; | Fm) = Sp + (n—m) o”.

Example 3. Consider a special case of Example 1 where the random variable
X; has a Bernoulli distribution, P{X; = 1} = p, P{X; = 0} = 1 — p. Again
assume that m < n. For any ¢ < m, consider E(X; | S,). If S, = k then
there are k 1s in the first n trials. Given S, = k it is an easy exercise in
conditional probability to show that P{X; =1| S, =k} = k/n. Hence,

p— Sn

E(Xi I Sn) n’

and

E(Sm | Sn) =E(X1|Sn)+ -+ E(Xm | Sn) = %Sn-

We will need to consider conditional expectations with respect to an infinite
collection of random variables,

E(Y | Xq,0 € A).
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Let F denote the information in {X,}. A random variable Z is F-measurable
if knowledge of all the {X,} determines Z. Essentially, Z is F-measurable

if Z = ¢(Xay,...,Xaq,) for some function ¢ and some finite subcollection
Xays- -y Xa,, or if Z is a limit of such random variables. As an example, sup-
pose Y, X1, X5, ... are independent random variables with X7, X5, ... normal

mean zero, variance one and Y having some unknown nontrivial distribution.
Let

Z;=X;+Y.
Let F,, denote the information in Z;,... , Z, and let F,, denote the informa-
tion in Z, Zs,.... One cannot determine the value of Y given Z;,... ,Z,, so

Y is not F,-measurable. However, Y is F.,-measurable since the law of large
numbers implies

Y = lim ‘_Zl_+_+_Z’i
n—oo n

If F denotes the information contained in { X, }, we will say that an event A
is F-measurable if one can determine whether or not the event has occurred if
one knows the values of {X,}. This is equivalent to saying that the indicator
function I 4 is an F-measurable random variable. The conditional expectation
E(Y | F) is defined to be the unique F-measurable random variable Z such
that for every F-measurable event A,

E(Y14) =E(Z14).

All of the properties (5.2) through (5.7) hold for this more general conditional
expectation.

5.2 Definition and Examples

A martingale is a model of a fair game. We will let {F,,} denote an increas-
ing collection of information. By this we mean for each n, we have a collection
of random variables A,, such that A,, C A, if m < n. The information that
we have at time n is the value of all of the variables in A,. The assumption
A C A, means that we do not lose information. A random variable X is
Fn-measurable if we can determine the value of X if we know the value of
all the random variables in 4,. The increasing sequence of information F, is
often called a filtration.

We say that a sequence of random variables My, My, M, ... with E (|M;|) <
oo is a martingale with respect to {F,} if each M, is measurable with respect
to F,, and for each m < n,

E(Mn | fm) = va (5'9)
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or equivalently,
EM, — M, | Fn) =0.

The condition E (|M;|) < oo is needed to guarantee that the conditional ex-
pectations are well defined. If F,, is the information in random variables
X1,...,Xn, then we will also say that My, My, ... is a martingale with re-
spect to Xg, X1,.... Sometimes we will just say My, My,... is a martingale
without making reference to the filtration F,. In this case it will mean that
the sequence M, is a martingale with respect to itself (in which case the first
condition is trivially true). In order to verify (5.9) it suffices to prove that for
all n,

E(Mn+1 I fn) = an
since if this holds, by (5.5),

E(Mn+2 | .7:71) = E(E(Mn+2 | ]:n+l) | fn)
= E(Mpy1 | Fn) = My,

and so on.

Example 1. Let X;,X5,... be independent random variables each with
mean u. Let So = 0 and for n > 0 let S,, be the partial sum

Spn=X1+4+ -+ Xn.

Then M, = S, — nu is a martingale with respect to JF,, the information
contained in Xy, ... ,X,. This can easily be checked by using Example 1 of
Section 5.1,

E(Mpy1 | Fn) = E(Sp1 — (n+ Dp | Fn) = E(Sny1 | Fn) = (n+ 1)p

= (Sn+p) = (n+1)pu=M,.
In particular, if yp = 0, then S, is a martingale with respect to F,.

Example 2. The following is a version of the “martingale betting strategy”
which is a way to beat a fair game. Suppose X, X5,... are independent
random variables with

P{X, = 1} = P{X, = 1} = %

We can think of the random variables X; as the results of a game where one
flips a coin and wins $1 if it comes up heads and loses $1 if it comes up tails.
One way to beat the game is to keep doubling our bet until we eventually win.
At this point we stop. Let W, denote the winnings (or losses) up through
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n flips of the coin using this strategy. Wy = 0. Whenever we win we stop
playing, so our winnings stop changing and

P{Wpiy =1| W, =1} = 1.

Now suppose the first n flips of the coin have turned up tails. After each flip
we have doubled our bet, so we have lost 1+24+4+---42""1 = 2" —1 dollars
and W, = —(2™ — 1). At this time we double our bet again and wager 2" on
the next flip. This gives

P{Wn iy =1|Wp =-(2" - 1)} =,

P{Whir = —(2"" = 1) [ Wy = —(2" = 1)} =
It is then easy to verify that
EWniy | Fn) = Wh,
and hence W, is a martingale with respect to F,.

Example 3. We can generalize the previous example. Suppose X;, Xo,...
are as in Example 2. Suppose that on the nth flip we make a bet equal to
B,,. In determining the amount of the bet, we may look at the results of the
first (n — 1)st flips but cannot look beyond that. In other words, B, is a
random variable measurable with respect to F,,—; (we assume that B is just
a constant). The winnings after n flips, W,, are given by Wy = 0 and

W, = iBij.
j=1

We allow B,, to be negative; this corresponds to betting that the coin will
come up tails. Assume that E (|B,|) < co (which will be guaranteed if the
bet at time n is required to be less than some constant C,). Then W, is a
martingale with respect to F,,. To see this, we first note that E (|W,]) < oo
follows from the fact that E(|B,|) < oo for each n. It is clear that W, is
Fn-measurable. Finally,

n+1
E(Wnir | Fo) = EQ)_ B;X; | Fn)

j=1

Z X | Fn) + E(Bny1 Xng1 | Fn)-

By (5.4),

EQY BiX;|Fo) =) B;X; =W,.
Jj=1 j=1
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Since B4 is Fp-measurable, it follows from (5.7) and (5.6) that
E(Bnt1Xn+1 | Fn) = Bpi1 E(Xny1 | Fn) = Br1E (Xn41) = 0.
Therefore,

EWpy1 | Frn) = Wi

Example 4. Polya’s Urn. Consider an urn with balls of two colors, red
and green. Assume that initially there is one ball of each color in the urn.
At each time step, a ball is chosen at random from the urn. If a red ball is
chosen, it is returned and in addition another red ball is added to the urn.
Similarly, if a green ball is chosen, it is returned together with another green
ball. Let X,, denote the number of red balls in the urn after n draws. Then
Xo =1 and X, is a (time-inhomogeneous) Markov chain with transitions

k

P{Xps —k+1|X, =k} = ——,
{Xnt1 +1] k} T2
n+2—k

P{Xpi1=k| X, =k}= ———
Ko = k[ X =k} = 222

Let M, = X,,/(n + 2) be the fraction of red balls after n draws. Then M, is
a martingale. To see this, note that

Xn
n+2

Since this is a Markov chain, all the relevant information in F,, for determining
Xn+1 is contained in X,,. Therefore,

E(Mpy1 | Fn) = E((n + 3)_1)(n+1 | Xn)

- [Xn+ X"]

E(Xn+1 | Xn) = X‘n +

n+3 n+ 2
— Xn
Cn+2

= M,.

A process M,, with E (|M,|) < oo is called a submartingale (supermartin-
gale) with respect to {F,} if for each m < n, E(M, | Frn) > (<) M,,. In
other words, a submartingale is a game in one’s favor and a supermartingale
is an unfair game. Note that M,, is a martingale if and only if it is both a
submartingale and a supermartingale.

Example 5. Let X, be a Markov chain with finite state space. Suppose
a payoff function f is given as in Chapter 4. Let v be the value function
associated to the payoff functions, v(z) = E(f(Xr) | Xo = ), where T is the
stopping rule associated with the optimal strategy. Then M, = v(X,) is a
supermartingale with respect to Xo, Xy, ....
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5.3 Optional Sampling Theorem

The optional sampling theorem states in effect, “You cannot beat a fair
game.” However, it is easy to see that this statement is false in complete
generality. For example, suppose one plays the fair game of flipping a coin,
winning one’s bet if the coin comes up heads and losing one’s bet if it is
tails. Then using the “martingale betting strategy” described in Example 2
of Section 5.2, one can guarantee that one finishes the game ahead.

A stopping time T with respect to a filtration {F,} is a random variable
taking values in the nonnegative integers (we allow T = 0o as a possible value)
that gives the time at which some procedure is stopped (T = oo corresponds
to never stopping), such that the decision whether to stop at time n must
be made using only the information available at time n. More precisely, we
say that T is a stopping time (with respect to {F,}) if for each n, the event
{T = n} is measurable with respect to F,.

Example 1. Let k be an integer and let T' = k.
Example 2. Let A be a set and let T4 = min{j : X; € A}.

Example 3. If T and U are stopping times, then so are min{T,U} and
max{T,U}. In particular, if T is a stopping time and T,, = min{T,n}, then
each T, is a stopping time, Ty < T3 <Tp < ---,and T, < n.

The optional sampling (or optional stopping) theorem states that (under
certain conditions) if M, is a martingale and T is a stopping time then
E (M7) = E(My). This will not hold under all conditions since if we con-
sider the martingale betting strategy and let T be the first time that the coin
comes up heads, then 1 = E (Mr) # E (My) = 0. The first thing we would
like to show is that there is no way to beat a fair game if one has only a finite
amount of time.

Fact. Suppose My, My, ... is a martingale with respect to {F,} and suppose
T is a stopping time. Suppose that T is bounded, T < K. Then
E(Mt | Fo) = M.
In particular, E (Mr) = E (My).
To prove this fact, we first note that the event {T" > n} is measurable
with respect to F,, (since we need only the information up through time n to

determine if we have stopped by time n). Since My is the random variable
which equals M; if T = j we can write

K
Mr =Y M; I{T = j}.

=0
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Let us take the conditional expectation with respect to Fg_1,

E(Mr | Fx—1) = E(MgI{T = K} | Fx_1)

K-1

+ > E(MI{T = j} | Fk_1).

=0
For j < K — 1, M; I{T = j} is Fx_1-measurable; hence
E(M;I{T = j} | Fx-1) = M;I{T = j}.

Since T is known to be no more than K, the event {T = K} is the same as
the event {T" > K —1}. The latter event is measurable with respect to Fx ;.
Hence, using (5.7),

E(MK]{T= K} | .7:](_1) = E(MK[{T > K — 1} | .7:](_1)
=I{T>K -1} E(Mk | Fx-1)
= I{T > K — I}MK_l.

The last equality follows from the fact the M, is a martingale. Therefore,

K-1
E(Mr | Fx-1) = I{T > K =1} Mgy + Y M;I{T = j}
i=0
K2
=I{T>K -2} Mk_1+ ZMjI{sz}.
i=0

If we work through this argument again, this time conditioning with respect
to Fk_2, we get

E(Mr | Fx-2) = E(E(M7 | Fk-1) | Fr-2)
K-3
j=0

We can continue this process until we get

E(MT | fo) = Mo.

There are many examples of interest where the stopping time T is not
bounded. Suppose T is a stopping time with P{T < oo} = 1, i.e., a rule
that guarantees that one stops eventually. (Note that the time associated
to the martingale betting strategy satisfies this condition.) When can we
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conclude that E (Mr) = E(Mp)? To investigate this consider the stopping
times T;, = min{T,n}. Note that

M = MTn +MTI{T> n} —Mn[{T > Tl}
Hence,
E(Mr) = E(Mr, ) + E (Mg I{T > n}) — E (M, I{T > n}).

Since T,, is a bounded stopping time, it follows from the above that E (M7, ) =
E(Mp). We would like to be able to say that the other two terms do not
contribute as n — oo. The second term is not much of a problem. Since
the probability of the event {T" > n} goes to 0 as n — 0o, we are taking the
expectation of the random variable My restricted to a smaller and smaller
set. One can show (see Section 5.4) that if E (|M7|) < oo then E (|Mp|I{T >
n}) — 0.

The third term is more troublesome. Consider Example 2 of Section 5.2
again. In this example, the event {T > n} is the event that the first n flips
are tails and has probability 27™. If this event occurs, the bettor has lost a
total of 2™ — 1 dollars, i.e., M,, =1 — 2™. Hence

E(M, I{T >n})=2""(1-2"),

which does not go to 0 as n — oo. This is why the desired result fails in this
case. However, if M,, and T are given satisfying

lim E (|M,|I{T > n}) =0,

then we will be able to conclude that E (Mr) = E (My). We summarize this
as follows.

Optional Sampling Theorem. Suppose My, My,... is a martingale with
respect to {Fn} and T is a stopping time satisfying P{T < oo} =1,

E (IMz]) < o, (5.10)
and
lim_E (IMo|I{T > n}) =0. (5.11)
Then, E (Mr) = E (Mj).

Example 1. Let X, be a simple random walk (p = 1/2) on {0,...,N}
with absorbing boundaries. Suppose Xo = a. Then, X,, is a martingale. Let
T =min{j : X; =0or N}. T is a stopping time, and since X, is bounded,
(5.10) and (5.11) are satisfied [note that (5.10) and (5.11) are always satisfied
if the martingale is bounded and P{T" < oo} = 1]. Therefore

]E(MT) = ]E(Mo) = a.
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But in this case E (M7) = NP{Xt = N}. Therefore,
a
N

This gives another derivation of the gambler’s ruin result for simple random
walk.

P{Xr =N} =

Example 2. Let X, be as in Example 1 and let M,, = X2—n. Then M,, is a
martingale with respect to X,. To see this, note that by Example 2, Section
5.1,

E(Mns1 | Fo) =E(X2 —(n+1) | Foy =X2+1—-(n+1)=M,.

Again, let T = min{j : X; = 0 or N}. In this case, M, is not a bounded
martingale so it is not immediate that (5.10) and (5.11) hold. However, one
can prove (Exercise 1.7) that there exist C' < oo and p < 1 such that

P{T > n} < Cp™.
Since |M,,| < N? + n, one can then show that E (|Mr|) < co and
E (|M,|I{T > n}) < Cp"(N?+n) — 0.

Hence the conditions of the optional sampling theorem hold and we can con-
clude

E(Mr) = E (M) = a*.
Note that
E(Mr) =E(X2) —E(T) = N?P{Xr = N} —~E(T) = aN — E(T).
Hence,

E(T) = aN —a® = a (N — a).

Example 3. Let X, be a simple random walk (p = 1/2) on the integers
{-..,=1,0,1,...} with Xo = 0. We have seen that this is a martingale. Let
T = min{j : X; = 1}. Since simple random walk is recurrent, P{T" < co} = 1.
Note that X7 = 1 and hence

1=E(X7) #E (X,) = 0.

Therefore, the conditions of the optional sampling theorem must not hold. We
will not give the details here but it can be shown in this case that P{T > n} ~
en~Y/2 for some constant c¢. By the central limit theorem, the random walk
tends to go a distance of order y/n in n steps. In this case E (| X,| I{T > n})
does not go to 0.
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Example 4. Example 1 can be extended to general Markov chains. Let P be
the transition matrix for the irreducible Markov chain X,, on the finite state
space S. Let A be a subset of S and let F be a function from A to R. Then
we claim that there is a unique function f on S satisfying

flx) =F(z), xz€A,

Pf(z):=> p(z,y) fly) =0, zeI\A

yEA

This is not surprising if one realizes that the last equation gives k equations
in k unknowns where k is the number of elements in S\ A. Suppose f satisfies
these conditions. Let T = min{n > 0: X, € A} and T,, = min{n,T}. Let
M, = f(Xr,). Then M, is a bounded martingale, and hence,

f(z) =E[Mo | Xo =] = E[Mr | Xo = 2] = E[f(Xr) | Xo = z].

5.4 Uniform Integrability

Condition (5.11) is often hard to verify. For this reason we would like to give
conditions that may be easier to check from which we can conclude (5.11).
We start by considering one random variable X with E (] X|) < co. Let F
denote the distribution function for | X|. Then it follows that

lim E(|X|I{|X| > K})= lim/ |z| dF(x) = 0.
K—oo K—oo [

Now suppose we have a sequence of random variables X;, Xs,.... We say
that the sequence is uniformly integrable if for every € > 0 there exists a K
such that for each n,

E[|X,| I{|X| > K}] <e.

It is important that K does not depend on n. If X, X,,... are uniformly
integrable, then the following holds: for every € > 0, there is a § > 0 such
that if if P(A) < 4, then

E(|X,|14) < € (5.12)

for each n. Again, § may not depend on n and (5.12) must hold for all values
of n. To see that uniform integrability implies this, let ¢ > 0 and choose
K sufficiently large so that E[|X,|I{|X,| > K}] < €/2 for all n. If we let
0 = €/(2K), then if P(A) < 4,

E(|Xnlla) < E(|Xnlla; | Xn| < K) + E(|Xn|; [ Xn] > K)
< KP(A) + (¢/2) < e.
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To develop a feeling for the definition, we will start by giving an example
of random variables that are not uniformly integrable. Consider Example
2 of Section 5.2, the martingale betting strategy, and consider the random
variables Wy, W1, Wy, .... If we let A, be the event {X; = Xo =--- =X, =
—1} then P(A,) = 27" and E(|W,|l4,) = 27™(2" — 1) — 1. We clearly
cannot satisfy the conditions for uniform integrability for any e < 1.

Now suppose that Mg, M;,... is a uniformly integrable martingale with
respect to Xo, X1,... and T is a stopping time with P{T < co} = 1. Then

lim P{T > n} =0,

n-—00

and hence by uniformly integrability
lim E (|M,|I{T > n}) = 0;
n—00

that is, (5.11) holds. We can therefore give another statement of the optional
sampling theorem.

Optional Sampling Theorem. Suppose My, My,... is a uniformly inte-
grable martingale with respect to {F,} and T is a stopping time satisfying
P{T < o0} =1 and E (|]Mr]|) < 0c0. Then E(Mr) = E (M,).

The condition of uniform integrability can be difficult to verify. There are
a number of easier conditions that imply uniform integrability. We mention
one here and give another in the exercises (Exercise 5.15).

Fact. If X;,Xo,... is a sequence of random wvariables and there exists a
C < oo such that E(X2) < C for each n, then the sequence is uniformly
integrable.

To prove the fact, let € > 0 be given and let § = €2/4C. Suppose P(4) < 4.
Then
E(|Xnl1a) = E[| X[ I(AN{|Xn| > 2C/€})]
FE 1 XalI(AN {|X0] < 2C/e})
< (¢/20) E[| X, > I(AN {|Xn| > 2C/€})]
+(2C/e) P(AN{| Xn| < 2C/e})
< (e/2C) E(|X,|?) + (2C/e) P(A) < .

Example 1. Random Harmonic Series. It is well known that the har-
monic series 1+ & + % + -+ diverges while the alternating harmonic series
1-3+3%— 1+ converges. What if the pluses and minuses are chosen
at random? To study this, let X;, X5,... be independent random variables
with P{X; =1} =P{X; = -1} = 1/2. Let My =0 and for n > 0,

"1
j=17
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By Example 1, Section 5.2, M, is a martingale. Since E (M,,) =0,

E (M2) = Var(M?) = ZVar( ) z::izgi::lz

Hence M, is a uniformly integrable martingale. The question of convergence
is discussed in the next section.

Example 2. Branching Process. Let X,, denote the number of offspring
in the nth generation of a branching process (see Section 2.4) whose offspring
distribution has mean p and variance o2. Then (Exercise 5.5) M,, = p~ "X,
is a martingale with respect to X;, Xs,... . Suppose p > 1. Then (Exercise
5.11) there exists a constant such that for all n, E(M2) < oo and hence M,
is a uniformly integrable martingale for u > 1.

5.5 Martingale Convergence Theorem

The martingale convergence theorem states that under very general condi-
tions a martingale M,, converges to a limiting random variable M,. We start
by considering a particular example, Polya’s urn (Example 4, Section 5.2). In
this case M, is the proportion of red balls in the urn after n draws. What
happens as n gets large? In Exercise 5.12 it is shown that the distribution
of M, is approximately a uniform distribution on [0, 1] for large values of n.
This leads to a question: Does the proportion of red balls fluctuate between 0
and 1 infinitely often or does it eventually settle down to a particular value?
We will show now that the latter is true.

Let 0 < @ < b < o0 and suppose that M,, < a. Let T be the stopping time

T =min{j: j > n and M; > b},

and let T,, = min{7T,m}. Then for m > n, the optional sampling theorem
states that

E(Mr,) =M, < a.
But
E(Mr,,) > E(Mg, {T < m}) = E(My {T < m}) > bP{T < m}.
Hence,

P{T <m} < %
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Since this is true for all m,

P{T < oo} < %

This says that with probability of at least 1 — (a/b) the proportion of red balls
never gets as high as b. Now suppose the proportion of red balls does get
higher than b. What then is the probability that the proportion goes down
below a again? By the same argument applied to the proportion of green balls
we can say that the probability of dropping below a is at most (1 —b)/(1 —a).
By continuing this argument, we can see that, starting at a, the probability
of going above b, then below a again, then above b, then below a, a total of n
times, can be bounded above by

a 1-b\ ra 1-b a\ (1-b a\™ [1-b\"

(E) <1—a) (E) (l—a) ('5) <1—a> B (E) (1—a> ’
which tends to 0 as n — co. Hence, the proportion does not fluctuate infinitely
often between a and b. Since a and b are arbitrary, this shows that it is

impossible for the proportion to fluctuate infinitely often between any two
numbers, or, in other words, the limit

My = lim M,
n—00
exists. The limit M., is a random variable; it is not difficult to show (see
Exercise 5.12) that M, has a uniform distribution on [0, 1].
We now state a general result.

Martingale Convergence Theorem. Suppose My, M, ... is a martingale
with respect to {F,} such that there exists a C < oo with E(|M,|) < C for
all n. Then there exists a random variable Mo, such that

M, — M.

Note that the limiting random variable M, is measurable with respect
to My, My, .... The proof of the theorem is similar to the argument above.
What we will show is that for every 0 < a < b < oo the probability that the
martingale fluctuates infinitely often between a and b is 0. Since this will be
true for every a < b, it must be the case that the martingale M,, converges to
some value M.

Fix a < b. We will consider the following betting strategy which is rem-
iniscent of the martingale betting strategy. We think of M, as giving the
cumulative results of some fair game and M, ;; — M,, as being the result of
the game at time n + 1. Whenever M,, < a, bet 1 on the martingale. Con-
tinue this procedure until the martingale gets above b. Then stop betting
until the martingale drops below a again and return to betting 1. Continue
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this process, changing the bet to 0 when M,, goes above b and changing back
to 1 when M,, drops below a. Note that if the martingale fluctuates infinitely
often between a and b this gives a strategy that produces a long-term gain
from the fair game.

After n steps the winnings in this strategy are given by

Wo =3 Bj(M;— M),
j=1

where Bj is the bet which equals 1 or 0 depending on whether the martingale
was most recently below a or above b. One can verify as in Example 3, Section
5.2 that W,, is a martingale with respect to My, M1, .... We note that

W, > (b—a)U, — |M, — a,

where U,, denotes the number of times that the martingale goes between a
and b (this is often called the number of upcrossings) and |M,, — a| gives an
estimate for the amount lost in the last interval (this is relevant if the bettor
is betting 1 at time n). Since W, is a martingale we have

E(Wo) = E(Wy) = (b - a) E (U) — E (IM, — al).
Since E (|M,, — a|) < E(|M,|) + a < C + a, we get

< ]E(W())-I—C-I-a.

E(Un) = b—a

Since this holds for every n, the expected number of upcrossings up to infinity
is bounded and hence with probability one the number of upcrossings is finite.
This proves the theorem.

The martingale property implies that for every n, E (M,) = E (M). It is
not necessarily true, however, that E (M) = E (M,). For a counterexample,
we return to the martingale betting strategy. In this case

We = lim W, =1,

n—o0

and hence E (W) # E (Wp) = 0. If the martingale is uniformly integrable,
it is true that the limiting random variable has the same expectation (see
Exercise 5.13).

Fact. If M,, is a uniformly integrable martingale with respect to Xo, X1, ...,
then

My, = lim M,

n—0o0

exists and E (M) = E (Mp).



Martingales 119

Example 1. Let X,, be the number of individuals in the nth generation
of a branching process whose offspring distribution has mean p and variance
0% Assume Xy = 1 and let M,, = p~ "X, be the associated martingale.
If o < 1, we know that extinction occurs with probability one and hence
M, — My, = 0. In this case E (M) # E (Mp). In Section 5.4, we noted that
M, is uniformly integrable if 4 > 1, and hence M, is a nontrivial random

variable with E (M) = 1.

Example 2. Let X;, Xo,... be independent random variables with P{X; =
1} =P{X;, = —1} = 1/2 and let M,, be the random harmonic series

n
M, = Z
j=1

It was noted in Section 5.4 that M, is a uniformly integrable martingale.
Hence M, approaches a random variable M,. This says that the random
harmonic series converges with probability one.

- X

Example 3. Let M, be the proportion of red balls in Polya’s urn. In this
case, suppose that at time n = 0 there are k red balls and m green balls (so
after n draws there are n + k + m balls). Since M,, is bounded it is easy
to see that M, is a uniformly integrable martingale and M, approaches a
random variable My, with E (M) = E(My) = k/(k + m). It can be shown
(see Example 7 below) that the distribution of My, is a beta distribution with
parameters k and m, i.e., it has density .

(k(ﬁ%(ﬂzi)'l)' 1 -a)™!, O<z<L

Example 4. Let M, be a martingale with respect to Xg, X1,..., and let T
be a stopping time with P{T" < oo} = 1. Let T}, = min{n, T} and Y,, = Mr,.
Then Y, — Y, where Yoo = Myr. As we saw in the optional sampling
theorem, it is not always the case that E (Y,,) = E (Yy). However, this is true
if M,, is uniformly integrable.

Example 5. Let X, be an irreducible Markov chain on a countably infinite
state space S with transition function p(z,y). A function f is called harmonic
at x if

f@) =" p@y) f©)-
yeS

In Chapter 2 we considered the problem of determining whether or not the
chain was recurrent. We now prove one of the assertions we made there.
Suppose z is a fixed state in S and let u(x) denote the probability starting at
state x that the chain ever reaches state z. In other words, if

T =min{j > 0: X; = z},
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then
uz) =P{T < 0| Xo = z}.

As we noted then, u(z) = 1 and u(z) is harmonic at any x # 2.
Suppose now that we can find some function v that satisfies:

v(z) =1, (5.13)

0<uv(z) <1, (5.14)

v(z) =Y pl@,y)o(y), z#z2 (5.15)
yeS

If T is defined as above, and T,, = min{n,T}, one can check that M, =
v(Xr,) is a martingale with respect to Xg, X1,.... Since v is bounded, M,
is uniformly integrable and

lim M, = M,

n— 00

exists with E (M) = E (M)).

If the chain is recurrent, then P{T' < oo} = 1 and My = v(z) = 1. Hence
if Xog =z, 1 = E(My) = v(z). Thus, if the chain is recurrent there is no
nontrivial solution to equations (5.13) through (5.15).

Example 6. Let X, Xo,... be independent random variables with

3 1 1
IP’{XZ»— 5} —]P’{Xi - 5} -5

Let My = 1 and for n > 0, let M,, = X;---X,. Note that E(M,) =
E(X:)---E(X,) =1, and in fact, if F,, denotes the information contained in
Xla B 7Xna

E(Mnyy | Fr) = E(Xy - Xny1 | Fn)
=X XpE(Xny1 | Fn)
= X1 - XpE(Xnt1) = My,
Hence M, is a martingale with respect to Xi,Xa,.... Since E(|M,]|) =
E (M,,) = 1, the conditions of the martingale convergence theorem hold and

hence

M, — My
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for some random variable M,. Is M,, uniformly integrable? The answer is no;
in fact, the limiting random variable My, = 0 [and hence E (M) # E (My)].
To see this, consider the logarithm of the martingale,

n
InM, =3 InX;.
j=1
The right-hand side is the sum of independent identically distributed random
variables with mean
1.1 1 3
InX;,))=-In-+-In= .
E(In X;) 5 n2+2 n2<0

By the law of large numbers, In M,, — —oco and hence M,, — 0.
Note in this case

E(M7) =E(X?)---E(X7) = (5/4)",
so the second moment is not uniformly bounded.

Example 7. A typical problem in statistics is to estimate the mean 6 of a
distribution given independent samples

}/I’YQ,YBV"

from the distribution. In Bayesian statistics, the parameter 6 is taken to be
a random variable with a certain distribution, called the prior distribution.
Assume that E [6] = p under the prior distribution. Let My = u and

M, =E[f|Yi,...,Y,)

Then M, is a martingale. The conditional distribution on M, given Y; =
Y1,--- ,Yn = Yn is called the posterior distribution. The martingale conver-
gence theorem tells us that

lim M, = M,

n—o0o

for some random variable which depends on the infinite sequence of values
{Y1,Y2,...}. Moreover, it can be shown that M,, = E[My | Y1,...,Y,]. The
strong law of large numbers tells us that for fixed 6,

Vit 1Y,
lim 2T

n—00 n

0.

That is, the random variable 6 can be determined from the infinite sequence
of values. This gives My, = 0,

lim E[0|Yi,...,Y,]=6.
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As an example assume that Y7,Y5,... are independent samples from a
Bernoulli distribution with P{Y; = 1} = 1 — P{Y; = 0} = 6. If we have
no a priori knowledge about § we might assume that 6 is a random variable
uniformly distributed on [0, 1]. For fixed 6,

P{Yi+-+Y, =k} = (Z) 0% (1 — )k,

Let fn(0 | k) denote the conditional density on 6 given Y; + --- + Yy = n.
Bayes theorem shows that

(ReFa-or*  (n41)
Jo (6% (1 —0,)m—F doy,  K!(n—k)!
This is called the beta distribution with parameters k +1 and n — k+ 1. A

straightforward calculation shows that the mean of this distribution is (k +
1)/(n +2). Note that

fu(0] k) = 6k (1 — g)"*.

1
]P’{Yn+1=k+1|Yn=k}=/ P{Y41 =16} £o(0 | k) db
0

1
k+1
= 0fn(0|k)do = ——.
| o rm =g
If we let Y;, +1 represent the number of red balls in an urn and (n—Y;,)+1 the
number of green balls in the urn, we have exactly the transitions for Polya’s
urn.

5.6 Maximal Inequalities

If My, My, M,, ... is a sequence of random variables, define the mazimum
processes by
M, = max{My,... , M.}, M} =max{|Mo,...,|M,|}.

Maximal inequalities relate probabilities or expectations for M, M) to those
for M,, or |M,,|. We give two examples here, the reflection principle and the
Doob mazimal inequality. The basic ideas of the proofs is the following: if M,
is a martingale or a submartingale and M; is large for some j < n, then there
is a good chance that M,, will be large as well. Stopping times are used to
make these arguments precise.

Reflection Principle. Suppose X1, Xo,... are independent random vari-
ables whose distribution is symmetric about the origin. Let My = 0, M,, =
X1+ +X,. Then for every a > 0,

P{M, > a} <2P{M, > a}.
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To prove this, let T' be the smallest j such that M; > a and note that

P{M,>a} =) P{T =j},

§=0
and
n
P{M, >a} =Y P{T =j,M, >a}
3=0
=Y P{T =j}P{M, >a|T = j}.
§=0
However, independence and symmetry of the distribution of X, X, ... show
that

P{M, >a|T=j}>P{M,—-M; >0|T = j}
1
=P{M, — M; >0} > 3
Doob’s Maximal Inequality. Suppose My, My, M,, ... is a nonnegative
submartingale with respect to F,. Then for every a > 0,
— E[M,
P{M, >a} < —u
a
This inequality can be considered as a generalization of the inequality

P(M, > a} < 2]

To prove the maximal inequality, we again let T be the smallest j with M; > a
and let A; denote the F;-measurable event {T = j}. Since M,, is nonnegative
we can write

E(M,] > E[M, [{T <n}| =3 E(M, 4,

where I denotes the indicator function. However, since A; is F;-measurable,
properties of conditional expectation can be used to see that

E[My1a,] =E[E(Mnla, | F;)] = E[E(My, | F;)14,]
> E (M, I,
Z ]E[CL[AJ] =a ]P(AJ)
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Therefore,
E[M,] > Za P(A;) = aP{M,, > a}.
§=0
If My, M;,... is a martingale with respect to JF,,, not necessarily nonneg-

ative, we cannot apply this inequality immediately. However, if » > 1, and
E[|M,|"] < oo for all n, then |M,|" is a submartingale. To check this we need
only establish the following fact about conditional expectations: if r > 1,

E[Y|"| Ful 2 [E[Y | Fa] I, (5.16)
for then
E[|Myir|" | Ful 2 | E(Mpyy | Fn) |7 = | Mn|"
Also, if E[e¥] < oo, then
EleY | F] > BV, (5.17)
and hence for every b,

E[ebMn+: | Fl > e BOMni1|Fn) _ bMy

This shows that e®™» is a submartingale, assuming E [eM"] < co. We leave
the derivation of (5.16) and (5.17) to Exercise 5.3, but we state the conclusion
here.

Doob’s Maximal Inequality. Suppose My, M1, Ms, ... is a martingale with
respect to F,,. Then for every a,b >0 and r > 1.

P, > ) < Z0)
- ]
P{M, >a} < .

Example. Let S,, = X; +- - 4+ X,, denote simple random walk in Z, and let
= 1/4/n. Since S, is a martingale, we get

P{max{S},...,S,} > avn} < e “E[e5/V7].
But,
E[e5/V7) = E [+ Xn)/ V)

/vy e—l/\/ﬁ> "

= (E[eX/V7)" = ( ;
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Taylor series shows that

Therefore,

lim E[e5/V"] = lim 1+L+O 1 =el/2,
n—oo n—oo 2n n2

Hence, there is a C' < oo such that for all n sufficiently large and for all a > 0,

P{max{Sy,...,S,} > avn} < Ce “ (5.18)

5.7 Exercises

5.1 Consider the experiment of rolling two dice. Let X be the value of the
first roll and Y the sum of the two dice. Find F(X | Y), i.e., give the value
of E(X | Y)(y) for all y.

5.2 Suppose that X; is a Poisson process with parameter A = 1. Find
E(X1 | X2) and E(X2 | Xl)

5.3 A function f: R — R is convez if for every 0 <p <1 and z < y,

flpz+ (1 -ply) <pflx)+(1-p)fy).

Show that if f”/(x) > 0 for all x, then f is convex.

Show that if » > 1, then f(x) = |z|" is convex.

Show that if b is a real number, then f(z) = €®® is convex.

Show that if f is convex; p1,...,p, are nonnegative numbers summing
to 1; and xy,...,x, are real numbers, then

a
b
c
d

A~ N N~
—_—

n n
D iz | <> v flag).
j=1 Jj=1

v

(e) Establish Jensen’s inequality: for any random variable X, E[f(X)]

f(E[X]), assuming the expectations exist.

(f) Show that if YV is a discrete random variable and X is as in (e), then
E(f(X)|Y) > f(E(X)|Y). (Note: this fact can then be established for Y

that are not discrete by a limit process.)
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5.4 Let X3, X2, X3,... be independent identically distributed random vari-
ables. Let m(t) = E (e!*1) be the moment generating function of X; (and
hence of each X;). Fix ¢ and assume m(t) < oo. Let Sp =0 and for n > 0,

Sn=X1++ Xn.

Let M, = m(t)""e! . Show that M, is a martingale with respect to
X1, Xo,. ...

5.5 Let Xg, X1,... be the values of a branching process as in Chapter 2,
Section 2.4, i.e., X, gives the number of individuals in the nth generation.
Suppose that the mean number of offspring per individual is u. Show that
M, = =" X, is a martingale with respect to Xg, X1, ...

5.6 COMPUTER SIMULATION

(a) Consider the Polya urn model. Simulate this model with a computer by
starting with one red and one green ball and continuing until the number of
balls in the urn is 1000. Note the fraction of red balls in the 1000 balls. Do
this simulation at least 2000 times and note how many times the fraction of
red balls is in the intervals [0,.05), [.05,.1),...,[.95,1). From the simulation
data, make a conjecture as to what the distribution of the fraction of red balls
looks like.

(b) Do another simulation of the Polya urn model. Again, start with one
red and one green ball and continue until there are 1000 balls in the urn. Note
the proportion of red balls at this time and then continue until there are 2000
balls. Compare these two numbers (i.e., compare Mggg and Miggg). Do this
at least 100 times.

5.7 Consider a biased random walk on the integers with probability p < 1/2
of moving to the right and probability 1 — p of moving to the left. Let S, be
the value at time n and assume that Sy = a, where 0 < a < N.

(a) Show that M,, = [(1 — p)/p]°" is a martingale.
(b) Let T be the first time that the random walk reaches 0 or NV, i.e.,

T =min{n:S, =0or N}.
Use optional sampling on the martingale M,, to compute P{S(T) = 0}.

5.8 Let S, be as in Exercise 5.7.
(a) Show that M,, = S, + (1 — 2p)n is a martingale.
(b) Let T be the first time that the random walk reaches 0 or N, i.e.,

T =min{n:S, =0or N}.

Let T,, = min{n,T} and let Z, be the martingale Z, = Mr,. Show that
there exists a C' < oo such that E(Z2) < C for all n. You may wish to use
Exercise 1.7.
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(c) Apply the optional sampling theorem to E (M) and use this and the
result from Exercise 5.7 to find the expected number of steps until absorption,
E(T).

5.9 Suppose X, is an irreducible Markov chain on finite state space S with
transition matrix P. Suppose Aisasubsetof Sand F: A — Randg: S\A —
R are given functions. Let T = min{n : X,, € A} and T, = min{n,T}.
Suppose f : S — R is a function satisfying:

(a) Show that

M, = f(Xz,) = Y 9(X1,),

is a martingale.
(b) Use optional sampling to conclude that

T-

f(z)=E )= 3 g(X;) | Xo =

=0

....

(Hint: Exercise 1.7 could be useful.)

5.10 Let S, be as in Exercise 5.7 and let F,, denote the information in

S(),... ,Sn. Let
L\ Sa/2
M, = ! - (1 p) .
[4p(1 — p)]*/ p

(a) Show that M, is a martingale with respect to F,.

(b) Show that M, S, is a martingale with respect to F,.
(c)
n

Suppose that R, is a process such that Ry = My and both R, and
S, are martingales with respect to F,,. Show that R, = M, for all n.

5.11 Let X, be the number of individuals in the nth generation of a branch-
ing process in which each individual produces offspring from a distribution
with mean u and variance 02. We have seen previously that M,, = u~ "X, is
a martingale.

(a) Let F,, denote the information contained in Xg, ..., X,. Show that

E(Xp1 | Fn) = 02 X5 + 0° X,
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(b) Suppose p > 1. Show that there exists a C < oo such that for all n
E(M?) < C.
(c) Show that this is not the case if u < 1.

5.12 Consider the Polya urn problem. Let M, be the proportion of red balls
after n draws (starting with one red and one green ball). Prove by induction

on n that

1

P an—k— = , k=1,2,... ,n+1.
n+ 2 n+1

5.13 Suppose X, Xo, ... are uniformly integrable with X,, — Y with prob-
ability one. Show that E (X,) — E(Y).

5.14 Let X;, X5,... be independent, identically distributed random vari-
ables taking values in {-1,0,1,...} with mean y < 0. Let Sop = 1 and for
n > 0,

Spn=14+X;+---+ X,.

Let T = min{n : S, = 0}. By the law of large numbers, we know that
P{T < oo} = 1. Show that E(T) < 1/|u|. [Hint: it suffices to prove for
each n, if T,, = min{n, T}, then E(T,) < 1/|u|. Consider the martingale
M, = S, — nu.] Exercise 5.16 below can be used to prove that E (T') = 1/|u|.

5.15 Let M,, be a martingale with respect to F,,. Assume there exists a
nonnegative random variable Y with E(Y) < oo and |M,| < Y for all n.
Show that M, is a uniformly integrable martingale.

5.16 Let X;, X5,... be independent, identically distributed random vari-

ables with mean u. Let T be a stopping time with respect to X;, Xo,... with
E(T) < oc.
(a) Let

oo
Y = [ Xa|[{T > n},
n=1

where I denotes the indicator function. Show that E (Y) < oo.
(b) Let T,, = min{n, T} and

My = X1+ + Xz, — uTh.

Explain why M, is a uniformly integrable martingale (see Exercise 5.15).
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(c) Prove Wald’s equation,

T
E (Z Xn> = pE(T). (5.19)

(d) Suppose {F,} is a filtration such that X, is F,-measurable and for
m > n, X, is independent of F, (i.e., X,, is independent of every F,-
measurable random variable). Suppose that T is a stopping time with respect
to {F.}. (In other words, more information than X;,..., X, is used to
determine whether to stop at time n. However, any additional information
used is independent of X, 1, Xp12,...). Show that (a) through (c) still hold.

5.17 Let S, be simple random walk in Z.
(a) Show that for every 3 > 0 there is a Cz < 0o such that for all positive
integers n and all a > 0

P{max{S,,...,Sn} > ay/n} < Cze .
(Hint: follow the derivation of (5.18) using b = 3/y/n.)
(b) Show that for every ¢ > 0,

Z]P{Sn > ¢y/nlogn} < oco.
n=1

(c) Use this to show that with probability one,
Sn

lim ———— =0

N )






Chapter 6

Renewal Processes

6.1 Introduction

Let T1,T5, ... be independent, identically distributed, nonnegative random
variables with distribution function F(z) = P{T; < z}. We will think of the
random variables T; as being the lifetimes of a component or as the times
between occurrences of some event. The renewal process associated with T;
is the process that counts the number of events that have occurred by time
t. More precisely, the renewal process V; is defined by Ny = 0 for ¢t < T} and
otherwise

Ny=max{n:T) + -+ T, <t}

We are assuming that at time 0 we are at the beginning of a lifetime. Some-
times we will consider a slightly more general process where the process at
time O is in the middle of a lifetime. We let ¥ be a nonnegative random
variable independent of T3, 75, ..., with perhaps a different distribution. We
think of Y as the time until the first event, and then the waiting times for
later events are given by the T;. More precisely, we set Ny = 0 for t < Y’; and
fort>Y,

Ny=min{n:Y +Th +---+ T, > t}. (6.1)

We will assume that the random variables T; have finite, positive mean and
we set

p=E(T3).

Example 1. Poisson Process. Consider the Poisson process with rate
parameter A\. The waiting times 77,75, ... are independent, exponential ran-
dom variables with parameter A and N, is the Poisson process. In this case

w=1/A\

Example 2. Let X, be an irreducible, positive recurrent, discrete-time
Markov chain starting in state x. Let

Ty, = min{n > 0: X,, = z},

131
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and for i > 1 let
T; =min{n > 0: X1,4...47,_,4+n = T}.

In other words, T; measures the amount of time between the (i — 1)st return
and the ith return to state x. In general it is difficult to determine the
distribution function F' for T; given the transition matrix for the chain. We
noted previously [see (1.11)] that

where 7 denotes the invariant probability measure for the chain. If we instead
start the chain at some state y # x we can define

Y = min{n >0: X, =z},

Ty = min{n > 0: Xy4n = z},
and recursively,

T; =min{n > 0: Xyi7 447, 4n = T}

Example 3. Let X; be an irreducible, positive recurrent, continuous-time
Markov chain starting in state z. Define

R, = inf{t > 0: X; # z},

S = mf{t >Ry X: = .’13},

Ty = Ry + 5,
and in general

R, = inf{t >0: XT1+~-+T,_1+t # CL‘},

S; = inf{t >0: X7 4o g Ty 1 +R 4t = CB},

Ti=R; +S;.

The random variables R; are exponential with parameter a(z), the rate at
which the chain is changing from state . The distribution of the S;, and
hence the T, is not so easy to determine.



Renewal Processes 133

Example 4. M/G/1 Queue. Suppose we have a queue with a single server.
Customers arrive according to a Poisson process with rate A, i.e., the waiting
times between customer arrivals are independent exponential random vari-
ables with parameter \. We will assume that the service times for customers
are independent, identically distributed random variables with mean p. How-
ever, we will not assume that the service times are exponential (in most cases
of interest one does not expect that the service time should have the “loss of
memory” property so an exponential distribution is not appropriate). The G
in M/G/1 stands for “general” (service distribution).

If we let Y; denote the number of people in the queue at time ¢, then Y;
is not a Markov process. However there is a natural renewal process one can
associate with the queue. Suppose Yy = 0. Let

Ry =inf{t >0:Y; =1},
S] = 1nf{t >0: YR1+t = 0},

Ty = R, + 5;.
Similarly, we define for ¢ > 1,

Ri = lnf{t >0: YT1+...+T1_1+t = 1},
SZ = 1nf{t > 0: YT1+..‘+T1_1+R1+t = 0},

T, = R, + S;.

Note that the variables R; are exponential with rate A, but the distribution
of the S; can be very complicated. Nevertheless, under the assumption that
E(T;) < oo, we can see that T7,T5, - satisfy the conditions for a renewal
process. We can think of the time represented by the R; as the “idle times”
and the time represented by the S; as the “busy times.”

Suppose we have a renewal process N; corresponding to the random vari-
ables T1,Ty,.... In general, N; is not a Markov process; in order to predict
when the next occurrence will happen we need to know when the last occur-
rence took place. For this reason it is natural to consider the “age process”

e it N, = 0,
t= t—[T1+"‘+TNt],ith>0.

The process (N, A¢) can be thought of as a Markov process. The Poisson
process is a special example of a renewal process that is a Markov process;
for the Poisson process the probability of an event occurring in the interval
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[t,t + At] is independent of A;. This follows from the “loss of memory”
property associated with the exponential distribution.

Our first result for renewal processes will be the analogue of the (strong)
law of large numbers. Recall that the law of large numbers states that with
probability 1,

. T+ 4Ty,
lim ———— = .
n— oo n
In terms of the renewal process N, this states that for all ¢ > 0, if n is
sufficiently large,

Nun(l—e) <n,

an(l—i—e) >n.
Equivalently, for all ¢ > 0, if ¢ is sufficiently large,

t

N, -
Tl

IA

t
> —.
T u(l+e)

This gives the following.
Law of Large Numbers. With probability one,

lim N =—. (6.2)

We now derive a central limit theorem for renewal processes. Assume that
the variance of each T} is 0? < 0o. Then the usual central limit theorem states
that the distribution of

i+ +Th —np
ovn

approaches a unit normal (i.e., a normal random variable with mean 0, vari-
ance 1). Slightly more informally we can say that for large n

Ty + -+ T, ~nu+oyvnB,

where B is a unit normal. This states that the number of occurrences in time
np + oy/nB is n. From (6.2), we would expect the number of occurrences in
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the time interval of size ov/n|B| to be about o+/n|B|/u. Hence we have the
number of occurrences in time ny is about

n—g\/ﬁB.
m

If we write t for nu and note that —B is also a unit normal random variable
we see that

t o
Nem —+ —7 VB,
T
where B is a unit normal. While this is only a rough sketch, this argument
can be made rigorous, giving a central limit theorem for renewal processes.

Central LimitTheorem. If the waiting times T; have mean p and variance
02, then as t — oo the distribution of

Nt - /J,_lt
oud/2\t
approaches a standard normal distribution.

Example 5. This kind of informal reasoning can be applied to more com-
plicated examples. Suppose we have a continuous-time Markov chain X; on
state space {1,2} with a(1,2) = a; and «(2,1) = ay. Assume Xy = 1 and
let Y; denote the amount of time spent in state 1 up to time ¢,

t
Yt=/ [{X, =1} ds.
0

Define R; and S; as in Example 3 above (with = 1). The random variables
R; are exponential with rate a; and hence have mean y; = 1/a; and variance
0? = 1/a?. Similarly the random variables S; are exponential with mean
po = 1/ap and variance 05 = 1/a3. For large n the central limit theorem
states that

Rl+...+annp,1+a1\/;l-Bl,

51+~-'+Sn%nu2+02\/ﬁBg,

where By and B, are independent unit normals. In other words, in time n(u; +
pz2) ++/n(o1 By + 02 Bs), the amount of time spent in state 1 is approximately
nuy ++/noy By. For large t, the amount of time spent in state 1 in an interval
[t,t+ At] is about A¢[u; /(1 + p2)]. Hence the amount of time spent in state
1 up through time (u; + p2)n is approximately

npy + vVnoy By — ad Vn(oy By + 02Bs)
M1+ 2
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= N1 + [,UQUlBl — ,U10'2BQ].

1+ 2

Since B, and By are independent, we can write this as

nu1+f\/ o142 12+ ( o2 )QB__n+ fom— L

p1+ po p1+ p2 a1 a1 a +ay az

where B is a unit normal. If we let t = (u1 + p2)n we see that the distribution
of

}/'t_?_

ajtaz
gVt
approaches a unit normal where
2 _ 2c1 09
(C¥1 + 02)

6.2 Renewal Equation

We are interested in the large-time behavior of renewal processes. Assume
we have a renewal process with waiting times T7,75,... with mean u as
defined in the previous section. For T' > 0, we let U(t) be the expected
number of occurrences up through time ¢, where for convenience we will say
that an event occurs at time 0. In other words,

U(t) = E (N, + 1).

Renewal Theorem I

im 28 _ L (6.3)
t—oo t 7

This is almost a consequence of (6.2); one does need to be a little careful,
however, because it is possible for random variables to converge without the
expectations converging. We leave the derivation of (6.3) from (6.2) to the
exercises (Exercise 6.5).

To analyze the large-time behavior of renewal processes we will need a
second, stronger version of the renewal theorem. The second renewal theorem
can be thought of as a “derivative” form of (6.3) or as a statement that the
renewal process converges to a steady state. The second renewal theorem
states that under appropriate hypotheses, for every r > 0,

tllvrglo Uit+r)-U(t) = —, (6.4)
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i.e., for large t, the expected number of renewals in any interval of length r is
about r/u. It is not too difficult to see that some restrictions must be put on
the distribution for (6.4) to hold. For example, if the waiting times T; take
on only integer values, then for every integer n,

1
U(n)=U(n+ 5),
since renewals occur only at integer times. It turns out that this is really the
only thing that can go wrong. We say that a nonnegative random variable X
has a lattice distribution if there exists a number a such that with probability
one the value of X lies in

{ak:k=0,1,2...},

and we call the smallest such a the period of the distribution. Otherwise we
say the X has a nonlattice distribution. We now state the second renewal
theorem.

Renewal Theorem II. If T}, T, ... have a nonlattice distribution, then for
every r > 0,

lim U(t+r)—U(t) = .
t—o0 17

If the Ty, Ts, ... have a lattice distribution with period a, then
lim U((n+1)a) — U(na) = %.

n—oo

We will not give a proof of the nonlattice form of this theorem, but rather
will concentrate on showing how it is used. In the next section we will relate
the lattice form of this theorem to known results about positive recurrent
Markov chains. Let F' denote the distribution of T;. Recall that the convo-
lution of two distributions F,G of nonnegative random variables is defined
by

FxG(t) = /O F(t - s) dG(s) = /O G(t — s) dF(s).

The convolution F'* G gives the distribution function of the sum of two inde-
pendent random variables with distribution functions F' and G respectively.
Let F be the distribution function for the T;. We will write F(™ for the con-
volution of F' n times, i.e., for the distribution function of T} + --- + T,,. For
convenience we will write F(9) for the trivial distribution function associated
to the random variable which is identically 0. Recall [see (1.13)] that if Y is
a random variable taking values in the nonnegative integers, then

E(Y) = i]P’{Y >n}.
n=1
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Using this, we can write the renewal function U(t) as
Ut)=E(N:+1)=1+ iIP’{Nt >n}
n=1
:1+§:]P{T1+~-+Tn§t}
n=1
= i FM(t).
n=0

Let A; denote the time elapsed since the last renewal,

A, = t lthZO,
T\t = (Ty + -+ Tp), if Ny =n.

If we think of the times T; as being lifetimes of some component, then A;
represents the age of the current component. We would like to determine the
steady-state distribution of A;, i.e., we would like to determine for each z,
Uy(z) = lim P{A; < z}.
t— o0
We will condition on the first renewal. One way for A; to be less than x is for
no event to have occurred up through time ¢ and ¢ < . This corresponds to
t < T1 and has probability 1 — F(¢) if ¢ < x. If the first renewal has occurred

before time ¢, at time s say, then the renewal process starts over and there is
time t — s left until time ¢. From this we get the equation

PLA: <2} = Lo ()1 = FOL+ [ PAv, <a}dF(s). (65)

Here 1o 4)(t) denotes the function that equals 1 for 0 < t < z and equals zero
otherwise. If we let ¢(t) = ¢(t,x) = P{A; < z}, then this becomes

8(t) = 1o (1) [1 - F(1)] + /0 o(t — 5) dF(s).

This is an example of a renewal equation. We will now consider solutions
to renewal equations of the form

¢
80 =h(0)+ [ o(t - 5) dF (), (6.6)
0
or in the language of convolutions,

o(t) = h(t) + ¢ x F(2).
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We will need the associativity property for convolutions: if F' and G are
distribution functions

(px F)xG(t) = ¢ * (F *G)(1). (6.7)

Let us derive this in the case where F' and G have densities, so that dF'(t) =
f(t) dt and dG(t) = g(¢) dt. In this case

(0+F)+G(0) = [ (@ F)(t=)(s) d

:/t [/t_s¢(t—s—r)f(r) dr] g(s) ds
/qut— —s)dy] 9(s) ds
=/ ot —y) [/ fly—s)g(s) dS] dy

/qst— ¥ 9)(y) dy
= ¢ % (F+G)(t).

Here (f * g)(y) = (d/dy) (F * G)(y) denotes the density of the sum of two
independent random variables with density f and g, respectively.

We will first show that there is only one solution to (6.6) in the sense that
there is at most one ¢(t) that satisfies (6.6) with ¢(¢) = 0 for ¢ < 0 and such
that for each ¢ there is a number M = M; < oo with |¢(s)| < M for all
0 < s < t. Assume there were two such solutions, ¢1(t) and ¢»(t), for a given
h. Then ¥(t) = ¢1(t) — d2(t) satisfies |¢(s)| < 2M, 0 < s < t, and

t
= / W(t — s) dF (s).
0
If we iterate (6.7) we see for each n,
t
t) = / Y(t — s) dF™(s).
0
But,

(t) = /0 t p(t — 5) dF™(s)| < 2MF™)(1).

For fixed ¢, F(™(t) — 0 as n — oo. This shows that 1(t) = 0.
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Now that we know there is only one solution, we need only produce a
solution. Let

B(t) = /0 h(t —s)dU(s) = ) /O h(t —s) dF (™ (s)
n=0

= h(t) + f: /Ot h(t — s) dF™ (s).

Then one can see, using (6.7), that this satisfies (6.6). This therefore gives
the unique solution.
Let us now assume that the F is a nonlattice distribution. Another way of
stating the second renewal theorem is to say that for large s,
dU(s) =~ p~'ds.
If h(t) is a bounded function with fooo |h(t)| dt < oo, then this implies that
t

lim [ Bt~ s) dU(s) = Jim ~ /O “hs) Ut — 5) = % /0 " h(s) ds. (6.8)

t—oo 0

Since the age distribution A; satisfies (6.5), we can conclude that the large-
time age distribution function W 4(z) is given by

Uae) = Jim PLA < ) =+ [ 1i0u(s) [1- F(5)] ds

B Jo
1 x
- /0 [1 - F(s)] ds.

Note that
lim W (z) = ~ / 1= F(s)] ds

T—00 lj,

i/ooo/:odF(r)ds
:-11:/000[/; ds] dF(r)

1/°°
= — 'r‘dFT =].,
B Jo )

so this gives a valid distribution function. It has density

Yale) = W, (z) = i - F(z)], 0<z< oo,

Example 1. Suppose that the waiting times are exponential with rate A, so
that F(t) =1—e ", u=1/X\. Then

1 T
U,(z) = tligloP{At <z}= ;/() e Mds=1-—e",
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Hence the large-time age distribution for a Poisson process with rate A is an
exponential distribution with rate A. This is very plausible: at a large time
t, the age A; is the amount of time in the past one must go to see an event.
This reverse process also looks like a Poisson process, so the time until an
event should be exponential.

Example 2. Suppose that the waiting time distribution is uniform on [0, 10]

so that F(t) = (¢/10) , 0 <t < 10, and p = 5. Then the age A; is always less
than 10 and for z < 10,

t—o0 5

) 1 [ t 2
Uu(z) = lim P{A, <z} = ;/0 [1— —] dt == 1%0 (6.9)

Note in this case (as in essentially all cases but for exponential waiting times)
the large-time age distribution is not the same as the waiting time distribution.

We will now consider two other processes, the residual life
B; = inf{s : Ni1s > N},
and the total lifetime
Cy = A¢ + Bs.

The residual life gives the amount of time until the current component in a
system fails. Consider P{B; < x}. There are two ways for B; to be less than
z. One way is for there to be no renewals up to time ¢t and By < z. This
corresponds to t < Ty < t + = which has probability F(t + ) — F(t). The
other possibility is that there is a first renewal at time s < ¢ in which case we
need to consider {B;_s < z}. This gives the renewal equation

P{B; <z} =[F(t+z) - F(t)] + /Ot P{Bi—s <z} dF(s).

The solution to this renewal equation is
t
P{B, <z} = / [F(t—s+x)— F(t—s)]dU(s).
0

From (6.8), we can determine the large-time residual life distribution function
v B (.’L’) s
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Up(z) = hm/[Ft—s-&—w — F(t—8)] dU(s)

t—o0

= lim — /[Fs-l—:c ()] dU(t — )

:l_l/o [F(s+x)— F(s)] ds

:i [/000[1—F(s)] ds—/ooo[l—F(s-lrcc)] ds]
-+ [Tu- <>]ds—/:°[1—F<r>1dr}
L r

What we see is that the large-time distribution function for the residual life
is the same as that for the age distribution. If one thinks about this, it is
reasonable. Consider every lifetime T;. For every r,s with r + s = T}, there
will correspond one time t when A; = r, B; = s and another time u when
A, = s,B, = r. By this symmetry, we would expect A; and B; to have the
same limiting distribution.

Now consider the total lifetime C; and P{C; < x}. One way for C; to be less
than z is for there to be no renewals up through time ¢ and the total lifetime
less than . This corresponds to ¢t < T; < x which has probability F(z)—F(t).
The other possibility is that the first event occurs at some s < ¢ in which case
we need to consider P{C;_, < x}. This gives the renewal equation

P(C: < 2} = 10.1(8) [F(@) = F(0] + | B{Cios <2} dFs).

By solving the renewal equation and using (6.8), we see that the limiting
distribution for the lifetime, ¥ () is given by

t

lim 1[0,z](t — ) [F(x) — F(t — s)] dU(s)

t—o0

Ve(r)

t

= lim — 5 Lio,q)(8) [F(z) — F(s)] dU(t — s)

t— o0

1 / " o)(s) [F(z) — F(s)] ds

o
:p[a:F() /0 ()ds].

This formula is best understood in the case where F' has a density f(¢). In



Renewal Processes 143

this case ¢ (x) has density

Yo(x) = V(z) = %wf(w)- (6.10)

This can be understood intuitively. Suppose x < y. Then the relative “prob-
ability” of waiting times of size x and size y is f(z)/f(y). However, every
waiting time of size y uses up y units of time while a waiting time of size x
uses up x units of time. So the ratio of times in an interval of size z to an
interval of size y should be zf(x)/yf(y). The 1/u can easily be seen to be
the appropriate normalization factor to make this a probability density.

Example 3. If the waiting times are exponential with rate A, then yu = 1/A
and ¥4 and ¥p have exponential distributions with rate A. Note that ¥
has density

Yolz) = Nze e,

This is the density of a Gamma distribution with parameters 2 and A and is
the density of the sum of two independent exponential random variables with
rate A. For large times, the age and the residual life are independent random
variables.

Example 4. If F is uniform on [0,10], then u = 5, and ¥ 4 and ¥ g are given
by (6.9) with densities
x

Ya(z) =y¢p(z) = é ~ 0 <z < 10.

Note that the expected age or the expected residual life in the long run is

given by
10
1 T 10
L I g
/0 w[5 50] T3

The density of W is given by

1 T
z)=—-zf(r)=—, 0<a<]10.
vo()= 2 fx) =5, 0<z
It is easy to check that the age and residual life are not asymptotically inde-
pendent in this case, e.g., there is a positive probability that the age is over 8
and a positive probability that the residual life is over 8, but it is impossible
for both of them to be over 8 since the total lifetime is bounded by 10.

Suppose one is replacing components as they fail and the lifetimes are inde-
pendent with distribution F'. Suppose we consider the system at some large t,
and ask how long the present component is expected to last. This is equivalent
to finding the expected value of the residual life. This is given by

/0 zyp(x)dx = ;/0 z[l— F(z)]dz = ﬂ/o z? dF(z).
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The last equality is obtained by integrating by parts. It is easy to give exam-
ples (see Exercise 6.6) of distributions of densities f(x) such that

1 oo

< — 2% f(z) dz.
5 | a@

U
In fact, it is possible for u < oo and the expected residual lifetime to be
infinite. This may be surprising at first; however, a little thought will show
that this is not so unreasonable.

We finish this section by describing how to create a “stationary renewal
process.” Suppose T1,T5, ... are independent with nonlattice distribution F'.
Let ¥p be the large-time residual life distribution and let Y be a random
variable independent of Ty, T3, ... with distribution function ¥pg. Define Ny
as in (6.1). Then N, looks like a renewal process in steady state. It has the
property that for every s < t, N; — N has the same distribution as N;_.

6.3 Discrete Renewal Processes

In this section we will suppose that the random variables T7,T5,... are
lattice random variables. Without loss of generality we will assume that the
period a as defined in Section 6.2 is equal to 1 (the period is always equal to
1 in some choice of time units). Let F be the distribution function for the T;
and let

pn =P{T; =n} = F(n) — F(n—1).

We will assume for ease that pg = 0; if pg > 0 we can make a slight adjustment
of the methods in this section (see Exercise 6.10). Since the period is 1, the
greatest common divisor of the set

{n:p, >0}

is 1. As before set
o0
p=E(T) =Y npn,
n=1

and we assume p < 0.
Let N; denote the number of events that have occurred up through and
including time j, i.e., N; = 0 if j < T7 and otherwise

Nj =max{n:Ty +---+ T, < j}.
We can also define the age process A; by A; = j if j < T} and otherwise

Aj=j— (T +---+Tn,).
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The key fact is that A; is a Markov chain. Let

Pn
nZP{Ti=n|Ti>n—1}=1—_F—(n_—1)-

Then A; is a discrete-time Markov chain with transition probabilities
p(”v 0) = /\n+17 p(nan + ]-) =1- An-l—l'

Let K be the largest number & such that pr > 0 (where K = oo if py > 0 for
infinitely many k). Then A; is an irreducible Markov chain with state space
{0,1,... ,K — 1} if K < oo and state space {0,1,...} if K = oo. The chain
is also aperiodic since we assumed the period of F' is 1. We start with Ag =0
and note that the nth return to state 0 occurs at time 7} + --- + T;,. The
condition E (T;) < oo implies that A; is a positive recurrent chain.

The invariant probability = for this chain can be obtained by solving the
equations

m(n+1) =p(n,n+1)n(n)

(1- ’\n+1) 77(”)

_1-F(n+1)
—1_—F(n)7r(n), n>0,

ZP”O Z)‘n+l7r

n=0

The first equations can be solved recursively to yield

m(n) = [1 = F(n)]7(0).
To find the value for 7(0) for which Y 7(n) = 1, we check that

) 0o %)
S Fwl =3 3
n=0 n=0m=n+1

e’} m—1
=2 Pm ) 1
m=1 n=0
oo
= Z Mmpm = W
m=1

In particular,

1
m(0) = —.
(0) p

Note that

P{an event at time j} = P{N; > N;_;} = P{A; = 0}.
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Since A; is an aperiodic, irreducible, positive recurrent Markov chain we know
that

lim P{A; =0} = 7(0) = —
j—o0

This gives the second renewal theorem for discrete renewal processes.
We have also derived the large-time age distribution,

1— F(n)

Ya(n) = llm ]P’{A =n}=mx(n) = p

Consider the residual life,
B; =min{k > 0: N4 > N;}.
We can compute the large-time distribution of B;,

va(n) = lim P(B; = n)

li P{A; =m}P{B;=n|A; =
JLIEOZ{J m}P{B; =n|A; =m}

= 3 wm)P(B; = n| 4 =m)
m=0
_ = F(m) pn+m
_2:: 7 — F(m)
=£an+m
1-F(n-1)

In other words,
¢Yp(n) = lim P{B; =n} = lim P{A; =n—1} = ¢a(n - 1).
j—oo j—oo

The residual life has the same large-time distribution as the age except for
a difference of 1 which comes from the fact that the smallest value for the
residual life is 1 while the smallest value for the age is 0. For the total lifetime
of the component at time 7,

Cj =Aj+Bj,
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we can compute

Yc(n) = lim P{C; = n}

J—0o0

n—1
m=0

J—00

3
|
—

= 7(m)P{C; =n| A; =m}

3
I
= o

3
|

I

]
T
o
g

DPn
1 - F(m)

=}
=

1l

3
|
-

.

3
1l
o

3 =l~ 3
=
3

L
This is the discrete analogue of (6.10).
Example 1. Bernoulli Process. The discrete analogue of the Poisson pro-
cess is the Bernoulli process. Let 0 < p < 1 and let X1, X5, ... be independent
random variables with P{X; =1} =1 -P{X; =0} =p. N; =X, +--- + X;
represents the number of “successes” in the first j trials of an experiment with
probability p of success. The waiting times T; have a geometric distribution

P{T;=n}=(1-p)" 'p, n>1,
with g = 1/p. The asymptotic age distribution is given by
_1-F(n) N

=p Y (A-p™'p=p1-p",
H j=m+1

Ya(n)

i.e., the age is one less than a random variable with a geometric distribution.
The residual life distribution is geometric with parameter p. The asymptotic
lifetime distribution is given by

pc(n) =np* (1 -p)" 7,

which is the distribution of the sum of two independent random variables
with distributions ¢4 and ¢p, respectively. The age and the residual life are
asymptotically independent.

Example 2. Suppose F is uniformly distributed on {1,...,10} with u =
11/2. Then

n
= — =1,2,... .
F(n) 10’ n=12,...,10
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The asymptotic age distribution is given by

_1-F(n) 10-n

¢A(n) L 55 )

and for large time the residual life distribution is given by

_1-F(n-1) 11-n

. n=1,...,10.
v (n) P 55 0 "
The asymptotic lifetime distribution is given by
n
ve(n) =z, n=12...,10.

In this case, the age and residual life are not asymptotically independent.

6.4 M/G/1 and G/M/1 Queues

We will consider Example 4 from Section 6.1. Customers arrive into a single-
server queue from a Poisson Process with rate A\. Customers are served (first
come, first served) and the service time is a random variable with distribution
function F' and mean u < co. We will call the service rate 1/u, even though
the service times are not exponential. The service times and the arrival times
are independent. As mentioned before there is a natural renewal process
involved where Ri, Ry, ... denote the amount of time spent in “idle times”
while Sy, So, ... denote the amount of time spent in “busy times.” If the queue
starts idle, i.e., if Xo = O where X; denotes the size of the queue (including
the person being served) at time ¢, then the time until the start of the next
idle time is given by T} = Ry + S; and the time until the start of the (n+1)st
idle time is given

Ti+ -+ T,

where T; = R; + S;.

The times R; are exponential with rate A, i.e, with mean 1/X. The dis-
tribution of the S; is more difficult to determine. However, we will be able
to determine E (S;). Assume that the service rate is greater than the arrival
rate, i.e.,

px < 1.

Consider the start of a busy time, so that X; = 1. We will consider a discrete-
time Markov chain Y, that gives the number of people in the queue immedi-
ately after the nth person has been served. We start with Yy = 1. The value
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Y7 is obtained by considering the number of people who entered the queue
during the first service time and subtracting 1 (for the person who has left the
queue). For i > 1, Y] is obtained by adding to Y;_; the number of people who
entered the queue while the ith person was being serviced and subtracting
one. Let

7 =min{n :Y, = 0}.

If Uy,Us,, ... denote the service times of the customers, then the length of the
first busy time is given by

Si=U1+Us+---4+U,.

The Uy, Us, ... are independent random variables, each with distribution func-
tion F', but the U; are not independent of 7. If we let F,, denote the informa-
tion in Yy,...,Y, and Uy,... ,U,, then 7 is a stopping time with respect to

{Fn} and U, 41,Up4o, ... are independent of F,. If E(7) < oo, then Wald’s
equation (5.19) implies that

E(Si) = E(U;) E (7). (6.11)

It was shown in Exercise 5.14 that E (1) < oo if E(Y;) < 0 and in this case
another application of Wald’s equation can be made to show that

1
E (i)

E(r)=-

Let us compute E (Y;). The probability that k people arrive in the queue
during a service time Uj; is

qr = / P{k arrive | U; = s} dF(s)
0

[P e (sA)F

The expected number of arrivals is therefore
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where we write p = 1/u for the service rate. The expected length of a busy
time is given by

1

E($)=EW)E(r) = —.

The fraction of time that the queue is busy is given by

E(S)  _A
E(R)+E(S) »p

Note that this ratio tends to 1 as A — p.

If A = p, the chain Y,, can be shown to be recurrent (see Exercise 2.15) so
that the queue size returns to 0 infinitely often. However, in the long run the
fraction of time spent with the queue empty goes to 0. If A > p, the chain Y,
is transient, and hence the queue size goes to infinity.

Now let us consider the somewhat less realistic G/M/1 queue. Here cus-
tomers arrive one at a time with waiting times 73,75,... having common
distribution function F' with mean 1/X. There is one server and the service
times are exponential with rate p. We will assume that the service rate is
greater than the arrival rate, p > A.

There exists a natural Markov chain embedded in the G/M/1 queue. Con-
sider Y;, the number of customers in the system immediately before the nth
customer arrives. (We will assume that the queue starts out empty and we
set Yy = 0.) Then Y,, can easily be checked to be a Markov chain with state
space {0,1,2,...}.

To compute the transition probability for this chain we first for ease consider
what happens if there are an infinite number of people in the queue. Let g
be the probability that exactly k individuals are served between the arrival
times of two successive customers. If the arrival time is ¢, then the number of
customers served has a Poisson distribution with parameter pt. Hence

Qe = / P{k served | T; =t} dF'(t)
0

— /Ooo e—pt (p]:) dF( )

The expected number served is

> ko = Zk/ O ap )
k=0
— —ptﬂ
_/O [;}ke k!

= /oopt dF(t)
0
=p/A>1.

dF (t)
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Now if Y,, = j, then after the nth customer arrives there will be j + 1 cus-
tomers in the queue. The queue will serve customers until the queue empties.
It is easy to see then that

P{Yn+1=k|Yn:j}:(I(j+1)—k, k)=1,...,j+1,
P{Yo41=0|Y, =j}= Zq(j-'l-l)—k = Z G-
k<0 i>j+1

If we set pp = q1_;, | = 1,0,—1,..., then we see that Y, has transition
probabilities

p(j’k)zpk—ja kzlaa]+11
p(],O) = Zpk—j~
k<0

It can be shown (see Exercise 2.16) that this is a positive recurrent Markov
chain. Its invariant probability is of the form

m(j) = (1 - B),

where (3 is the unique solution to
oo
B=Y q#,
=0

with 8 € (0,1). It is hard to evaluate 3 analytically but it can be computed
numerically.

6.5 Exercises

6.1 Suppose the lifetime of a component T; in hours is uniformly distributed
on [100,200]. Components are replaced as soon as one fails and assume that
this process has been going on long enough to reach equilibrium.

(a) What is the probability that the current component has been in opera-
tion for at least 50 hours?

(b) What is the probability that the current component will last for at least
50 more hours?

(c) What is the probability that the total lifetime of the current component
will be at least 150 hours?

(d) Suppose it is known that the current component has been in operation
for exactly 90 hours. What is the probability that it will last at least 50 more
hours?
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6.2 Repeat Exercise 6.1 with the T; exponentially distributed with mean
150.

6.3 Repeat Exercise 6.1 with the T; having density

1

6.4 Repeat Exercise 6.1 with the T; having distribution

P{T; = 100} = P{T; = 200} = 1/2.

6.5 Let N; denote the renewal process associated with independent, identi-
cally distributed random variables T3, 75, ... with mean pu.

(a) Explain why for any positive integers j, k and any t, the following in-
equality holds

P{N, > jk} < [P{N, > j}]*.

(b) The law of large numbers for renewal processes, (6.2), states that for
every € > 0

limP{¥<Nt<M}=l. (6.12)

t—o0 - - M

Use (a) and (6.12) to conclude that for every € > 0,

t
lim 1E [NtI{Nt > (He)}] =0.
t—oo { M

(c) Derive the first renewal theorem, (6.3).

6.6 Assume that the waiting times T; have distribution

9

1
=~ L =107} = —.
10’ P{T, Or}

P(T; =1} = =

Note that the times T; have a nonlattice distribution.
(a) What is the age distribution ¥ (n)?
(b) For large times, what is the expected residual life? Compare to E (T5).

6.7 Suppose that there are two brands of replacement components, Brand
X and Brand Y, and that for political reasons a company buys replacements
of both types. When a Brand X component fails it is replaced with a new
Brand Y component and when a Brand Y component fails it is replaced with
a Brand X component. The lifetimes (measured in thousands of hours) of
Brand X components are uniform on [1, 2] and the Brand Y components have
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lifetimes that are uniform on [1,3]. Answer the following questions for large
time .

(a) What is the probability that the current component is Brand X7

(b) What is the distribution of the age of the current component?

(c) What is the distribution of the total lifetime of the current component?

(d) Would these answers be different if instead of alternating the brands,
they used the rule that when a component fails they randomly choose a Brand
X or Brand Y component with probability 1/2 for each?

~— o —

6.8 Suppose customers arrive in a one-server queue according to a Poisson
distribution with rate A = 1 (in hours). Suppose that the service times equal
1/4 hour, 1/2 hour, or one hour each with probability 1/3.

(a) Assume that the queue is empty and a customer arrives. What is the
expected amount of time until that customer leaves?

(b) Assume that the queue is empty and a customer arrives. What is the
expected amount of time until the queue is empty again?

(c) At a large time t what is the probability that there are no customers in
the queue?

6.9 Give an example of a renewal process with E[T;] < oo such that the
large time residual life distribution has infinite mean.

6.10 Assume T3,75,... are independent identically distributed nonnegative
random variables with P{7T; = 0} = ¢ € (0,1). Suppose the distribution
function of the T; is F' with mean u, and let G be the conditional distribution
function of the T; given that the T; > 0,

F(z) - F(0)

G(.’L‘):]P){TZS"E|T1>0}= 1—q
Let Ty, T», ... be independent, identically distributed random variables with
distribution function G and let U(t) and U(t) be the renewal functions asso-
ciated with the T; and the T; respectively. Show that

U(t) = (1-qU(?).






Chapter 7

Reversible Markov Chains

7.1 Reversible Processes

In this chapter we will study a particular class of Markov chains, reversible
chains. A large number of important chains are reversible, and we can take
advantage of this fact in trying to understand their behavior.

Suppose we have a continuous-time Markov chain X; taking values in state
space S (finite or countably infinite) with transition rates a(z,y). If 7 is any
measure on S, i.e., a nonnegative function on S, then the chain is said to be
reversible with respect to the measure w if for all z,y € S,

m(z) ez, y) = 7(y) aly, z).

We will say that the chain is symmetric if for every z,y

a(z,y) = a(y, o).

Note that a chain is symmetric if and only if it is reversible with respect to
the uniform measure 7(z) = 1, x € S. Similarly, a discrete-time Markov chain
with transition matrix P is said to be reversible with respect to 7 if

m(z) P(z,y) = 7(y) P(y,z),

for all z,y € S and symmetric if P(z,y) = P(y,z). In the next two sections
we will discuss continuous-time chains, but analogous statements hold for
discrete-time chains.

Example 1. Let G = (V, E) be a graph as in Example 5, Section 1.1. Let
S =V and

a(z,y) L (z,y) € E

= —, (z
) y d(gj) K b y b

where d(z) is the number of vertices adjacent to x. This is a continuous-
time analogue of Example 5. Then this chain is reversible with respect to the
measure 7(z) = d(z). If instead we choose

a(x7y) = ]'7 (x,y) e E7
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then the chain is symmetric and hence reversible with respect to the uniform
measure.

Example 2. Let G = (V, E) be any graph and let g : E — [0,00). Such a
configuration is often called a network. A network gives rise to a symmetric
chain with transitions

a(z,y) = a(y,z) = g(e),

if e denotes the edge connecting x and y. In the study of electrical networks the
rates g(e) are called conductances and their reciprocals are called resistances.

Example 3. Suppose we have a birth-and-death chain on S = {0,1,2,...}
with birth rates A, and death rates u,. In other words, the transition rates
are

a(n,n+1)=A,, a(n,n—1)= p,.
Let 7(0) = 1 and for n > 0,

_ AoAi A

mn .
() fiftz - fin

Then the chain is reversible with respect to the measure 7.

Example 4. Let G = (V,E) be any graph and suppose 7w : V — (0, 00)
is a positive measure on G. Suppose each vertex is adjacent to only a finite
number of other vertices. Define a(z,y) = 0 if (z,y) is not an edge of G and
for (z,y) € E,

alz,y) = min{l,%}.

Then « generates a chain that is reversible with respect to .

If a chain is reversible with respect to , then

Z m(y) oy, z) = 7(z) Z az,y) = 7(z) a(z),

yeS yeS

i.e., 7 is an invariant measure for a. If the state space is finite, or if the state
space is infinite with ) 7(2) < oo, then we can normalize 7 so that it is an
invariant probability for a. In particular, if « is irreducible, we know that if
« is reversible with respect to a probability measure 7 then 7 is the (unique)
invariant measure. Conversely, if an irreducible chain is reversible with respect
toam with > 7(z) = 0o, we can conclude that there is no invariant probability
measure and hence the chain is null recurrent or transient.

The reversibility condition is a way of stating that the system in equilibrium
looks the same whether time goes forward or backward. To give an easy
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example of a nonreversible chain consider the three-state chain on S = {0, 1, 2}
with rates

a(0,1) = a(1,2) = a(2,0) = 1,

a(1,0) = a(2,1) = a(0,2) = 2.

This is clearly irreducible with invariant probability measure 7(0) = 7(1) =
7(2) = 1/3. If the chain were to be reversible, it would need to be reversible
with respect to m, but clearly

m(0) «(0,1) # 7(1) (1, 0).

7.2 Convergence to Equilibrium

It is often useful to give estimates for the amount of time needed for the
chain to reach a measure close to the invariant probability measure. Let X;
be an irreducible continuous-time Markov chain with rates a(z,y), reversible
with respect to the probability measure m. We will assume that the state
space is finite, S = {1,... , N}, but one can generalize these ideas to positive
recurrent chains on an infinite state space. For ease, we will only consider the
case where A is symmetric (reversible with respect to the uniform measure),
but these ideas hold for all reversible chains.

There are a number of ways to measure the “distance” between two proba-
bility measures 7 and v on S. One very natural definition is the total variation
distance defined by

|7 = v||rv = max{|m(A) —v(A)| : A C S}.

It is easy to see that the maximum is obtained on the set A = {z : n(z) >
v(x)}. Therefore,

I~ vy = Y (n(a) - v(@)
m(x)2v(z)
- (nx) —v(@) + Y (va) - n(x)
m(z)>v(x) w(z)<v(zx)
= 23 In(a) — v()
z€S
1 1
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In the last expression, the 1/N represents the uniform measure on S and
N7, Nv are the “derivatives” of 7, v with respect to this measure.

Another measure of distance which is not quite as natural but is sometimes
easier to analyze is the L? or mean-squared distance,

1/2
1 2
lm = vz = Z N [N7(z) — Nv(zx)|
z€S
Note that |7 — v||z2 = N¥/2||x — v|| where || - | denotes the usual Euclidean

norm in RY. The Cauchy-Schwartz inequality
|5-@| < |ol|'/? o] '/?,
gives the inequality

|7 = vz > 2|7 — vV,

Example 1. Consider the chain with rates «(i,j) = b/N,i # j where b > 0.
For any i the vector ¥ with

_17 Z#J)

is a right eigenvector with eigenvalue —b. There is an N — 1 dimensional sub-
space of such eigenvectors; hence the eigenvalues for A are 0 with multiplicity
1 and —b with multiplicity N —1. If v is any probability vector, we can give an
exact expression for e*Av. Suppose we start in state 2. This chain starts with
distribution v, waits for an exponential “alarm clock” with rate b (mean 1/b)
to ring, and then chooses one of the N sites from the uniform distribution. If
we let m denote the uniform distribution, then

vjz{N—l,i:j

etv=ev4(1-e

The e~ term denotes the probability that the alarm clock has not gone off.
Therefore,

tb

le"Ay = mrv = e v — wllry < e,

ey — |z = e |l — 7|l 2.
If the chain starts at x, so that v(z) = 1, then ||v — 7||z2 ~ V'N, so the L?
distance is still large.

Despite it limitations, we will focus on bounding the rate of convergence
in the L2-distance, because techniques of linear algebra can be used. If A is
a symmetric matrix, then it can be shown (see an advanced book on linear
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algebra) that there is a complete set of eigenvalues and eigenvectors. More-
over, all the eigenvalues are real so we can write the eigenvalues in decreasing
order,

O0=XA>X2>2X32>---2> Ay

We know Az < 0 because the chain is irreducible. By symmetry, we see that
if {-,-) denotes inner product,

N N
(AD,w) = (0, Aw) = > > v'w A(G, j). (7.1)

i=1j=1

A matrix satisfying the first equality is said to be self-adjoint (with respect
to the uniform measure) and the expression on the right is often called the
quadratic form associated with the matrix.

Let

1=v,09,...,0n,

be the eigenvectors for A, which are both right and left eigenvectors since A
is symmetric. Using (7.1) we can see that

i (5, 0x) = (AD;,Ty) = (05, AVk) = Ak (0y, Tk),

and hence eigenvectors for different eigenvalues are orthogonal ((7;, ox) = 0).
We can therefore choose the eigenvectors so they are all orthogonal. These

eigenvectors are also the eigenvectors for the matrix e/ with corresponding

eigenvalues et

tA= _ th
ey = e Y;.

Let U C RN denote the N — 1 dimensional subspace generated by the vectors

{02, ... ,0p}, or equivalently, the set of vectors w satisfying
Z w' = 0.
i=1

By writing any @ € U as a linear combination of left eigenvectors, we can
easily see that

et < e,

where |[w]|> = Y, [w']?. Now suppose we start the chain with any proba-
bility vector 7. We can write

|
Il
i
+
‘S’
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where @ = (1/N)1 is the invariant probability and w = v — 7@ € U. Since
7e!A = 7, we can conclude

7' — 7l = (7 - 7)e A2 < €217 — 7| 2.

What we see is that the rate of convergence is essentially controlled by the
size of A2, and if we can get lower bounds on |Az|, we can bound the rate of
convergence.

Example 2. Consider simple random walk on a circle, i.e., the chain with
state space S = {1,...,N} and rates a(z,y) = 1/2 if |z — y| = 1(mod N).
This is reversible with respect to the uniform measure on S. The eigenvalues
for A can be found exactly in this case (see Exercise 7.9),

(j—1)2m .
Ao=cos LMY 4 j=1,2,...,N.
j cos( B j

In particular, Ay = cos(27/N) — 1 which for large N (by the Taylor series for
cosine) looks like —272N~2. This says that it takes on the order of about
N? time units in order for the distribution to be within e~! of the uniform
distribution. It makes sense that it takes on order N2 steps to get close to
equilibrium, if we remember that it takes a random walker on the order of N2
steps to go a distance of about N.

Example 3. Let the state space S be all binary sequences of length N, i.e., all
N-tuples (ay, ... ,an), a; € {0,1}. Note that the state space has 2V elements.
Consider the chain with a(z,y) = 1 if z and y are two sequences that differ in
exactly one component and a(z,y) = 0 otherwise. This is sometimes called
random walk on the N-dimensional hypercube. Clearly this is reversible with
respect to the uniform measure. It can be shown that —2j/N is an eigenvalue
with multiplicity (N ) In this case, Ao = —2/N and it takes on order N steps
to get close to equifibrium. This can be understood intuitively by noting that
if the number of steps is of order N, most components have had an opportunity
to change at least once.

Now let U be the set of vectors that are orthogonal to 1, i.e., the set of
vectors W satisfying

N
Zwi =0.
1=1

If we U, then Aw € U. If we write

W = agV2 + -+ + anUn,
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with a; = (0;, W), we see that

<’u_1, A’lII) = (aif)i, ajAz_)j)

M-

<
Il
N

a;ia; A (U, 0;)

<.
Il
»

I
M= 11 1M
M=

a? i (v;, 0;)

.
U

IN
J )
NE

(aiz_)i, aiz_)i) = )\2(’(1_},’U_}>.
1=2

Also, we get equality in the above expression if we choose w = 3. What
we have derived is the Rayleigh—Ritz variational formulation for the second
eigenvalue,

where the supremum is taken over all vectors w with

N

(1,w) = Zw’ = 0.

i=1
Lower bounds for A\, (i.e., upper bounds of |Az]) can be obtained by con-
sidering particular w € U. If T'C S, let w € U with components

; [1—n(T),ieT
VI -n(T), g,

number of elements in T’

m(T) = N

Note that (1,w) = 0 and

(w,w) = > [1—a(T)?+ Y m(T)>

i€T i¢T
=[1 = 7(T))2N7(T) + n(T)?N[1 — 7(T)] = N=(T)[1 — n(T)].
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(A’U_})Z = Z A,’j’wj
J

= —a@)[1-m(D]+ Y a()l-=(D)]- ) a(i)m(T)

JET,j#1 J€T
== a(G)l = m(T)] =" a(j,i)r(T)
igT JgT
=— Z a(j,1).
J€T

Similarly, if i ¢ T,

Therefore,

€T j&T i@T JEeT
==2_ 2 alii).
€T jgT
Define s by
. 2ieT ngET a(i, j)m (i)
k = inf .

rcs  w(T)[1 —=(T)]

Then by considering this choice of w in the Rayleigh--Ritz formulation, we
have

]/\2| S K.

Unfortunately this bound is often not very good. A large area of research is
concerned with finding better ways to estimate \2; we do not discuss this any
further in this book.

7.3 Markov Chain Algorithms

A recent application of Markov chain theory has been in Monte Carlo simu-
lations of random systems. The idea of Monte Carlo simulations is simple: to
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understand a random system one does many trials on a computer and sees how
it behaves. These simulations always use a random number generator, gen-
erally a function that produces independent numbers distributed uniformly
between 0 and 1. (Actually, a computer can only produce pseudo-random
numbers and there are important questions as to whether pseudo-random
number generators are “random” enough. We will not worry about that ques-
tion here and will just assume that we have a means to generate independent
identically distributed numbers Uy, Us, ... distributed uniformly on [0, 1].)

As an example, suppose we were interested in studying properties of “ran-
dom” matrices whose entries are Os and 1s. As a probability space we could
choose the set S of N x N matrices M, with

M(i,j)=0o0r1, 1<i,j<N.

A natural probability measure would be the uniform measure on all 2V * such
matrices. Writing an algorithm to produce a random matrix from this distri-
bution is easy—choose N? uniform random numbers U(i,5), 1 < i,5 < N,
and set

[0, UG,
M(i, j) = {1, if Ui, j

It takes on the order of N? operations to produce one N x N matrix, and
clearly every matrix in S has the same chance of being produced.

Now suppose we change our probability space and say we are only interested
in matrices in S that have no two 1s together. Let T be the matrices in S
with no two 1s together, i.e., the matrices M € S such that

M(i — 1,§) = M(i + 1,5) = M(i,j — 1) = M(i, j + 1) =0,

if M(i,7) = 1. Suppose also we want to put the uniform probability measure
on T (this is a natural measure from the perspective of statistical physics
where 1s can denote particles and there is a repulsive interaction that keeps
particles from getting too close together). While it is easy to define this
measure, it is a hard problem to determine ¢(N), the number of elements of
T. It can be shown that there is a constant 8 € (1,2) such that

lim ¢(N)'/N =8

N—o00

(so that the number of elements in T is approximately 8V 2) but the exact
value of @ is not known. Still we might be interested in the properties of such
matrices and hence would like to sample from the uniform distribution on T.

While it is very difficult to give an efficient algorithm that exactly samples
from the uniform distribution (and even if we had one, the errors in the
random number generation would keep it from being an exact sampling), we
can give a very efficient algorithm that produces samples from an almost
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uniform distribution. What we do is run an irreducible Markov chain with
state space T whose invariant measure is the uniform distribution. We can
then start with any matrix in T; run the chain long enough so that the chain
is near equilibrium; and then choose the matrix we have at that point.

For this example, one algorithm is as follows: 1) start with any matrix
M € T, e.g., the matrix with all zero entries; 2) choose one of the entries at
random, i.e., choose an ordered pair (i,j) from the uniform distribution on
the N2 ordered pairs; and 3) consider the matrix gotten by changing only the
(,7) entry of M. If this new matrix is in T, we let this be the new value of
the chain; if the new matrix is not in 7', we make no change in the value of
the chain; return to 2). This algorithm is a simulation of the discrete-time
Markov chain with state space T and transition probabilities

PM,M') = N2,

if M, M’ € T differ in exactly one entry; P(M,M’) = 0 if M and M’ differ
by more than one entry; and P(M, M) is whatever is necessary so that the
rows add up to 1. Clearly, P is a symmetric matrix and it is not too difficult
to see that it is irreducible. Hence P is a reversible Markov chain with state
space T' and its invariant distribution is the uniform measure.

Of course, we need to know how long to run the chain in order to guarantee
that one is close to the invariant distribution. As noted in the previous section,
this boils down to estimating the second eigenvalue for the Markov chain.
Unfortunately, estimating this eigenvalue is often much more difficult than
showing that the chain has the right invariant measure (which is quite easy in
this example). In this example, we clearly need at least N2 steps to get close,
since each of the entries should have a good chance to be changed.

We will give some other examples of where these kinds of algorithms have
been used. In all of these cases the algorithms are fairly efficient, although in
some cases only partial rigorous analysis has been given.

Example 1. Ising Model. Let S be the set of N x N matrices with entries
1 or —1. For any M € S we define the “energy” of the matrix by

HM)=- Y M(,j)M(@,j),
(4,9)~(¥,3)
where (i,7) ~ (i',j') if the entries are “nearest neighbors,”
li—i'|+1j—J'| = 1.

The value M(i, j) is called the “spin” at site (i,j) and the energy is mini-
mized when all the spins are the same. The Ising model gives a probability
distribution on S that weights matrices of low energy the highest. For any
a >0 we let

. _ exp{—aH (M)}
M) = s exp(—aH (M)}
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This is a well-defined probability measure, although it is difficult to calculate
the normalization factor

Z(a)= Y exp{—aH(M)}.

M’eS

If M and M’ are two matrices that agree in all but one entry, we can calculate
7o(M) /7 (M) easily without calculating Z(a).
Write M ~ M’ if M and M’ differ in exactly one entry. We define P, by

ma(M')

1
M) = — mi fa\>"” J
P.(M,M’) min {1, (M)

N? } MM

and

1
P,(M,M) =1~ — > Pu(M,M).
M’'~M

In other words, one runs an algorithm as follows: 1) start with a matrix M;
2) choose an entry of the matrix at random and let M’ be the matrix which
agrees with M everywhere except at that entry; 3) move to matrix M’ with
probability min{1, 7,(M')/m,(M)} and otherwise stay at the matrix M. It is
easy to check that this is an irreducible Markov chain reversible with respect
to mg.

Example 2. The above example is a specific case of a general algorithm.
Suppose G = (V, E) is a connected graph such that each vertex is adjacent to
at most K other vertices. Suppose a positive function f on V is given, and
let ™ be the probability measure

f)
ZwEV f(w) .

m(v) =

Write v ~ w if (v,w) € E and set

and
P(v,v)=1- > P(v,w).
w~vY
Then P is an irreducible Markov chain, reversible with respect to 7. Algo-

rithms of this type are often referred to as Metropolis algorithms.

Example 3. There is another class of algorithms, called Gibbs samplers,
which are similar. Suppose we have n variables (z1,...,z,) each of which
can take on one of K values say {ai,...,ax}. Let S be the set of K™ possible
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n-tuples and assume we have a positive function f on S. We want to sample
from the distribution

w1y Tn) = f@1: s Zn) (7.2)

- Z(ylv--- Yyn)E€S o ym)

Our algorithm is to choose a j € {1,... ,n} at random and then change z; to
z according to the conditional probability

f(x17~~ Yy Lj—1,2,Tj41y- - 7:571)

7% .
Zk:l f(xlv"‘ yLj—1, Ay Tj41s--- ,xn)

This gives the transition probability

P((z1,-- yZn), (Y1,--- ,Yn)) =

1 @1, o1, Yy Tjg1y e s Tn) L
- K 2 27 = ) y]7éz]7 ?Jz’=$z‘737é.77
nZk:lf(x17"'7xj—17akvxj+l7"' vxn) /

and P((z1,...,zn), (21,... ,2,)) equal to whatever is necessary to make the

rows sum to 1. Again it is straightforward to check that this is an irreducible
Markov chain, reversible with respect to m. Note also that to run the chain
we never need to calculate the denominator in (7.2).

The Ising model can be considered one example with n = N2, K = 2, and
the possible values —1,1. In this case we get

1 exp{—aH(M')}

P(M, M) = N2 exp{—aH (M)} + exp{—aH(M')}’

if M and M’ differ in exactly one entry.

7.4 A Criterion for Recurrence

In this section we develop a useful monotonicity result for random walks
with symmetric rates. To illustrate the usefulness of the result consider two
possible rates on Z2. The first is a(z,y) = 1 if |z—y| = 1 and 0 otherwise. This
corresponds to simple random walk which we have already seen is recurrent in
two dimensions. For the other rate, suppose we remove some edges from the
integer lattice as illustrated below. More precisely, suppose we have a subset
B of the edges of the lattice and state that a(x,y) = 1 only if the edge (z,y)
is contained in B.
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What our result will say is that for any such subset B the correspond-
ing chain is still recurrent. Assume we have a graph G = (V, E) and two
symmetric rate functions o and g on E.

Fact. If a produces a recurrent chain and f(z,y) < a(x,y) for all (z,y), then
B also produces a recurrent chain.

The proof of this statement takes a little work. We start with some pre-
liminary remarks. Suppose we write the elements of V' as {z¢, z1,22,...} (we
will assume V is infinite, for otherwise the chains are always recurrent). Let
An = {20, Zn, Tn+1,. ..} Let us start the chain at xg, wait until it leaves xq
for the first time, and then see what point in A, is hit first by the chain. Let
hn(zg) = hp(zo; @) be the probability that the first such point hit is not zg
(using transition rates ). Then it is not too difficult to convince oneself that
the chain is recurrent if and only if

lin;o hn(xo) = 0. (7.3)

It is the goal of this section to give a formulation of hy(z¢) that will allow us
to conclude the monotonicity result.

For this section we will assume that a graph G = (V| E) is given as well as
a symmetric transition rate a : E — [0,00). Let A be a subset of V and fix
xg € A. Let X; be a continuous time Markov chain with rates a and let T be
the infimum of all ¢ > 0 such that X; € A. Define f(y) to be the probability
starting at y that the first visit to A occurs at the point zg,

f(y) =P{X; =20 | Xo =y}

It is easy to see that f(xzg) = 1 and f(y) = 0 for y € A, y # xo. Suppose
y € A. Then the probability that the first new site that y visits is z is
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a(y,2)/a(y), where again we write a(y) = .. a(y, z). By concentrating
on this first move, we see that

fly) = Z P{first new site is 2} f(z)

zeV

-y Wy

zeV a(y)

or

a)fy) =Y aly,2)f(2). (7.4)

zeV

A function f satisfying (7.4) is called a-harmonic at y. We have shown that
our given f is a-harmonic at all y ¢ A, and one can show with a little more
work that f is the unique function that is a-harmonic at y ¢ A and that
satisfies the boundary condition f(zg) =1, f(y) =0, y € A,y # .

We will now characterize f as the function that minimizes a particular
functional (a functional is a real-valued function of a function). For any
function g let

Qa(9) =D > alz,y)(g(@) — g(y))*

zeV yeV

Suppose we consider only those functions g that satisfy the boundary condi-
tion g(zo) =1, g(y) =0, y € A,y # x. Let g be the function satisfying this
boundary condition which minimizes Q.. Then at any y ¢ A, perturbations
of g at y, leaving all other values fixed, should increase Q.. In other words if
we define g.(z) by

_ oy _Jalz), z#uy,
9(2) = {g(y) te 2=y,

Then

A simple calculation shows that this holds if and only if for every y ¢ A,

> 92)aly,2) = Y gw)aly, 2) = g(y)ay).

zeV zeV

In other words g is the function that is a-harmonic at each y ¢ A and satisfies
the boundary conditions. Since f is the only such function, § = f. Summa-
rizing, f, as defined above, is also the function that minimizes Q,(g) subject
to the boundary condition, g(xzo) =1, g(y) =0, y € A,y # z.
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We now use “summation by parts” to give another expression for Q,(f).
We start by writing

Qu(f) =D a@y)(f(@) - fy)°

zeV yeV

= L et @e) - 1)
—ZZ a(z,y) f(y)(f() = f(y))
—222 a(z,y) f(@)(f(@) = f(y))-

The last equality uses the symmetry of a. Since f(zp) =1 and f(y) =0, y €
A,y # x we can write this as

2 ¥ ale0 (1= 10)+2 3 0] L ala)(f(0) - £
But, if ¢ ¢ A, then f is a-harmonic at =,
S (e, )f ) = 3 al@y)f @) = a@) ().
; ;
Hence the second term in the sum is 0 and we get
Qul) =2 3 a1 = 1) = 2atan) 3 S0 “("”0’ ~ ).
;

Now let h(zg) be the probability that the chain starting at z¢ makes its first
visit to A, after leaving x( for the first time, at some point other than xy. By
considering the first step, we see that

hao) = 3 20U 1 _ gy - Dol )

2 "azo) 2a(zo)

where

Qal(wo, A) = inf Y~ " a(,y)(g9(z) - 9(y)),

zeV yeV

and the infimum is taken over all functions g satisfying g(z¢) = 0 and g(y) =
1, y € A,y # x. The beauty of the formula comes in the realization that if
B(z,y) is another collection of rates with 8(z,y) < a(z,y) for all z,y € V,
then

Qs(z0, 4) < Qa(xo, A).
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If we now write h,(zo; @) and hy,(zg, 5) as in the beginning of this section,
we see that we have shown that if 8(x,y) < a(z,y) for all z,y,

B(zo)
a(zo)

In particular, if we use the criterion given in (7.3), we see that if the chain
with rates « is recurrent, then the chain with rates § is also recurrent.

hn (05 B) < hn(2o; ).

7.5 Exercises

7.1 Show that every irreducible, discrete-time, two-state Markov chain is
reversible with respect to its invariant probability.

7.2 Suppose X; is a continuous-time Markov chain with state space S =
{1,..., N} and symmetric rates a.
(a) Show that for all ¢t and all z,

1

]P{St =X | S() = x} Z N (75)

(Hint: write
P{S;=z|So=a}=) {Syp=y|So=2}*)
yeS

(b) Give an example of a non-symmetric chain whose invariant probability
distribution is uniform such that (7.5) does not hold for some z € S,t > 0.

7.3 Let X,, be an aperiodic, discrete-time Markov chain on S = {1,... ,N}
whose transition probability is symmetric. Show that for all z € S and all
integers n,

1
= = > —,
P{Son = | Sp =z} > N

Does this hold if 2n is replaced with 2n + 17
7.4 Let X; be the continuous-time simple random walk on a circle as in
Example 2, Section 7.2. Show that there exists a ¢ > 0, independent of N,
such that for all z,y € {1,... ,N} and all t > N2,
c
]P{StleS():y} > ]—\[3

(Hint: (7.5) may be helpful.)
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7.5 Let X; be an aperiodic Markov chain with state space S = {1,... ,N}
with rates a and invariant probability 7. For every 0 < ¢ < 1, let T, be the
infimum of all ¢t > 0 such that for every z,y € S,

P{X: =z | Xo =y} > en(z). (7.6)

(a) Explain why T, < oo for every 0 < € < 1.
(b) Show that (7.6) holds for all ¢ > T..
(c) Show that if 0 < € < 1 and k is a positive integer,

Tl_(1_€)k S kTe

(d) Let X; be the continuous-time simple random walk on a circle as in
Example 2, Section 7.2. Show that there exist a ¢, > 0, independent of N
such that for all initial probability distributions v and all ¢ > 0,

||etA1/ —7|lrv < ce'ﬁt/Nz,

where 7 denotes the uniform distribution.

7.6 COMPUTER SIMULATION. Let M be a matrix chosen uniformly from
the set of 50 x 50 matrices with entries 0 and 1 such that no two 1s are together
(see Section 7.3). Use a Markov chain simulation as described in Section 7.3
to estimate the probability that the M(25,25) entry of this matrix is a 1.

7.7 COMPUTER SIMULATION. Let S,, be the set of finite sequences of
numbers (Ko, k1, ... ,kn) where each k; € {0,1} and no two 1s are adjacent,
ie, kj+kj—1 <1forj =1,...,n. Let p,(j) denote the fraction of such
sequences with k; = 1. Do a Markov chain simulation similar to the previous
exercise to estimate pago(0), p200(100).

7.8 In this exercise, we will calculate the values of p,(j) in Exercise 7.7
exactly. Let r,(ij) denote the number of sequences in S,, with kg = i, k, = j.
(a) Explain why

Tn+1(00) = 7,(00) + r,(01),  r,11(01) = r,(00),

and give similar equations for r,41(10),7,+1(11).

(b) Use these equations to find r,(00),7,(01),7,(10),7r,(11). (Hint: see
Exercise 0.3.)

(c) Find pn(j).

7.9 Find the eigenvalues of the N x N matrix A from Example 2, Section
7.2,

-1, i =7,
A(i,j) =4 1/2, i — j| = 1(modN),
0, otherwise.
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[Hint: any eigenvector with eigenvalue A can be considered as a function f(n)
on the integers satisfying

A(n) = 3 f(n+ 1)+ 3 (0 —1) ~ f(n),

f(n) = f(n+N),

for each n. Find the general solution of the difference equation and then use
the periodicity condition to put restrictions on the A.]

7.10 Let a(z,y) be a symmetric rate function on the edges of the integer
lattice Z¢, i.e., a nonnegative function defined for all z,y € Z¢ with |z —y| = 1
that satisfies a(z,y) = a(y, z). Suppose there exist numbers 0 < ¢; < ¢o < 00
such that for all z,y with |z — y| = 1,

¢ < alz,y) < co.

Let X; be a continuous-time Markov chain with rates a(z,y).
(a) If d = 1,2, show that the chain is recurrent.
(b) If d > 3, show that the chain is transient.



Chapter 8

Brownian Motion

8.1 Introduction

Brownian motion is a stochastic process that models random continuous
motion. In order to model “random continuous motion,” we start by writing
down the physical assumptions that we will make. Let X; represent the posi-
tion of a particle at time ¢. In this case t takes on values in the nonnegative
real numbers and X, takes on values in the real line (or perhaps the plane or
space). This will be an example of a stochastic process with both continuous
time and continuous state space.

For ease we will start with the assumption Xg = 0. The next assumption
is that the motion is “completely random.” Consider two times s < t. We
do not wish to say that the positions X and X; are independent, but rather
that the motion after time s, X; — X, is independent of X;. We will need
this assumption for any finite number of times: for any s; < t; < 59 <ty <
-+ < 8y < tp, the random variables X;, — X,,, Xy, — Xs,, ..., Xy, — X,
are independent. Also the distribution of the random movements should not
change with time. Hence we will assume that the distribution of X; — X
depends only on t — s. For the time being, we will also assume that there is
no “drift” to the process, i.e., E (X;) = 0.

The above assumptions are not sufficient to describe the model we want.
In fact, if Y; is the Poisson process and X; = Y; — ¢ [so that E(X;) = 0], X;
satisfies these assumptions but is clearly not a model for continuous motion.
We will include as our final assumption for our model this continuity: the
function X; is a continuous function of .

It turns out that the above assumptions uniquely describe the process at
least up to a scaling constant. Suppose the process X; satisfies these assump-
tions. What is the distribution of the random variable X;? For ease, we will
discuss the case t = 1. For any n, we can then write

X1 = [Xl/n - XO] + [XQ/n - Xl/n] +e 4+ [Xn/n - X(n—l)/n]'

In other words, X; can be written as the sum of n independent, identically
distributed random variables. Moreover, if n is large, each of the random
variables is small. To be more precise, if we let

M, = max{le/n - XOla |X2/n - Xl/n|7 cee |Xn/n - X(n—l)/n|},

173
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then as n — oo, M, — 0. This is a consequence of the assumption that X;
is a continuous function of t (if M, did not go to O then there would be a
“jump” in the path of X;). It is a theorem of probability theory that the
only distribution that can be written as the sum of n independent, identically
distributed random variables such that the maximum of the variables goes to
0 is a normal distribution. We can thus conclude that the distribution of X;
is a normal distribution. We now formalize this definition.

Definition. A Brownian motion or a Wiener process with variance param-
eter 02 is a stochastic process X; taking values in the real numbers satisfying

(l) X() =0 5

(ii) For any 817 < t; < 83 <ty < -+ < 8, < ty, the random variables
Xy, — Xsyy .o, Xt,, — X, are independent;

(iii) For any s < t, the random variable X; — X has a normal distribution
with mean 0 and variance (¢ — s)o?;

(iv) The paths are continuous, i.e., the function ¢ — X, is a continuous
function of ¢.

While it is standard to include the fact that the increments are normally
distributed in the definition, it is worth remembering that this fact can actu-
ally be deduced from the physical assumptions. Standard Brownian motion
is a Brownian motion with 02 = 1. We can also speak of a Brownian motion
starting at x; this is a process satisfying conditions (ii) through (iv) and the
initial condition Xy = z. If X; is a Brownian motion (starting at 0), then
Y; = X; + x is a Brownian motion starting at z. ‘

Brownian motion can be constructed as a limit of random walks. Suppose
Sy is an unbiased random walk on the integers. We can write

Sn:Y1+"'+Yn7

where the random variables Y; are independent,
1
P{Y; =1} =P{Y; = -1} = 3

Now instead of having time increments of size 1 we will have increments of
size At = 1/N where N is an integer. We will set

N
Win; = anSk,

where we choose a normalizing constant ay so that W has variance 1. Since
Var(Sy) = N, it is clear that we must choose ay = N~'/2. Hence in this
discrete approximation, the size of the jump in time At = 1/N is 1/V/N =
(At)'/2. We can consider the discrete approximation as a process for all values
of ¢ by linear interpolation (see the figure below).
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2V AL

AN 2At 3At 4At 5At 6AtL

As N — oo, this discrete approximation approaches a continuous-time,
continuous-space process. By the central limit theorem the distribution of

Sy
N

approaches a normal distribution with mean 0 and variance 1. Similarly,
the distribution of Wt(N) approaches a normal distribution with mean 0 and
variance t. The limiting process can be shown to be a standard Brownian
motion. (It requires some sophisticated mathematics to state explicitly what
kind of limit is being taken here. We will not worry about this detail.)

The path of a Brownian motion is very rough. Consider the increment
Xiiar — X for small At. The distribution of this increment has mean 0,
variance At so

W —

E (|Xt+At - Xt|2) = At.

In other words the typical size of an increment, | X; a: —X¢|, is about vV At. As
At — 0, vV At — 0, which is consistent with the continuity of the paths. What
about differentiability? Does it make sense to talk about dX;/dt? Recall the
definition of the derivative from calculus,

dX; li Xirat — Xy

dt  ardo At

When At is small, the absolute value of the numerator is on the order of
v/ At which is much larger than At. Hence, this limit does not exist. By a
sharpening of this argument one can prove the following.

Fact. The path of a Brownian motion X; is nowhere differentiable.

Care is needed in proving statements such as the one above. The intuitive
argument can be used fairly easily to prove the statement “for each t, the
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probability that X; is not differentiable at ¢ is 1.” This is not as strong as
the fact above which states “the probability that X; is not differentiable at
all values of ¢ is 1.” This distinction is a little tricky to understand. As a
possibly easier example consider the following two statements: “For each ¢,
the probability that X; # 1 is 1”7 and “The probability that X; # 1 for all
values of t is 1.” These statements are not the same, and, in fact, the first is
true and the second is false. For any given t, X; has a normal distribution;
hence the probability of taking on any particular value is 0 (this is true for any
continuous distribution). However, the probability that X; > 1 is certainly
greater than 0. If Xy = 0 and X; > 1, then the continuity of X; implies that
X: =1 for some 0 < t < 1. Hence the probability that X; = 1 for some
0 <t < 1 is greater than 0. The difficulty here comes with the fact that the
real numbers are uncountable. We can write

{X;=1forsome0<t<1}= |J {X, =1}
0<t<1

The right-hand side is a union of sets each with probability 0. However, it is
an uncountable union of such sets. The axioms of probability imply that the
countable union of sets of probability 0 has probability 0 but does not say
the same for an uncountable union. This phenomenon arises whenever one
deals in continuous probability. For example, if Y is any continuous random
variable then

{00 <Y <00} = U {Y =y}

—oo<y<oo

The right-hand side is a union of events with probability 0, but the left-hand
side has probability 1.

In stochastic processes with continuous time and space, many difficult tech-
nical problems can arise in trying to deal with uncountable unions of sets. We
will ignore most of these issues here. Most of these problems are relatively
easily overcome for Brownian motion.

8.2 Markov Property

Let X; be a standard Brownian motion. We will let F; represent the in-
formation contained in X, s < ¢, in other words all the information that can
be obtained from watching the Brownian motion up through time ¢. Suppose
s < t and consider the conditional expectation E(X; | F5). Note that

E(thfs):E(Xs'fs)+E(Xt—Xs|fs)~

Since X, is Fs; measurable, the first term on the right-hand side equals X.
Since X; — X is independent of F, the second term equals E (X; — X) = 0.
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Hence
E(X: | Fs) = Xs = E(X¢ | Xs).

The equality of the left-hand and right-hand sides above illustrates the Markov
property of Brownian motion, i.e., in order to predict X; given all the informa-
tion up through time s, it suffices to consider only the value of the Brownian
motion at time s. More generally, the Markov property implies that for func-
tions f,

E[f(Xt) I ]:s] = E[f(Xt) I Xs}‘

Brownian motion satisfies this property. This follows from an even stronger
property of Brownian motion: if Y = Xs4; — X,, then Y; is a Brownian
motion independent of Fs. In other words Z; = X, is a Brownian motion
starting at the (random) starting point X.

Let p;(z,y) denote the transition densities, i.e., the density of X; for Brow-
nian motion starting at x. Since X; — X is normal, mean 0, variance ¢,

e—(y—x)z/%, —00 < y < 00.

pt(m,y) = \/%

The transition densities satisfy the Chapman—Kolmogorov equation

Psyt(z,y) = /oo ps(z,2) pe(z,y) dz.

—00

This can be verified directly for this transition function, but one can also see
this by appealing to the Markov property. Since Z; = X is a Brownian mo-
tion starting at X, the Chapman—-Kolmogorov equation averages the density
pt(z,y) over all possible starting points z.

In order to do many useful computations about Brownian motions, a more
general Markov property is needed. This is generally referred to as the strong
Markov property. We first need the notion of a real-valued stopping time.
The definition is a generalization of the definition of a stopping time given
for discrete-time processes. We say that a random variable T taking values
in [0,00] is a stopping time for Brownian motion if for each ¢ the (indicator
function of the) event {T" < t} is measurable with respect to F;. In other
words, to know whether or not the process has stopped before time ¢, one
only needs to look at the Brownian motion up through time ¢. The most
important examples will be stopping times of the form

T, = inf{t: X; = z}.

If T is a stopping time, we write Fr for the information contained in the
Brownian motion up through the stopping time T (one gets to view the path
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up through time T but not beyond). We will let Y; denote the process beyond
time T,

Y, = Xoyr — X7

Strong Markov Property. Y; is a Brownian motion independent of Fr.

It is easier to see what this means by considering an example of how the
property is used. Suppose the Brownian motion starts at 0 and we want to
calculate the probability that there exists some ¢ with 0 <¢ <1 and X; > 1.
Let T = T; be the first time that the Brownian motion equals 1. Then, by
continuity, the event {X; > 1 for some 0 < ¢t < 1} is the same as the event
{T <1}. Since

P{T =1} <P{X; =1} =0,
we can see that
P{T <1} =P{T < 1}.

Now consider the event {X; > 1}. Since X, is normal, mean 0, variance 1,

]P’{Xlzl}:/loo !

2
e /2 dx.
V2

Also,
P{X; > 1} =P{T<1}P{X;, >1|T<1}.

Now we use the strong Markov property. Suppose T' < 1. We may assume
in fact that T < 1 (since T = 1 has probability 0 of occurring). Then,
given T, X; — Xt = X; — 1 is a normal random variable, mean 0, variance
1 — T. Regardless of the variance, we know by the symmetry of the normal
distribution that the probability that this normal random variable is greater
than or equal to 0 is 1/2. Hence, we conclude

P{X;-1>0|T <1} =1/2.

Therefore
© 2
P{T <1} =2P{X; >1}=2 —— e /2 g
e O e

This result is a particular case of the reflection principle. We now state the
general result which is proved in the same way.

Reflection Principle. Suppose X; is a Brownian motion with variance pa-
rameter o2 starting at a and a < b. Then for any t > 0,

P{X; > b for some 0 < s <t} =2P{X; >b| Xo =a}

oo

1 20 2

= 2/ e~ (2=a)"/207¢ g,
b V2rmto?
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Example 1. Let ¢ > 1 and let us compute the probability that a standard
Brownian motion crosses the x-axis sometime between times 1 and t, i.e.,

P{Xs = 0 for some 1 < s < t}.

We first condition on what happens at time ¢ = 1. Suppose X; = b > 0. Then
the probability that X, = 0 for some 1 < s <t is the same as the probability
that X, < —b for some 0 < s <t — 1. This is the same (by symmetry) as the
probability that X > b for some 0 < s <t — 1. This probability is given by
the reflection principle, so

P{X, =0 for some 1 <s<t|X; =b} = 2/ =221 gy
b

1
V2r(t—1) ‘

By symmetry, again, the probability is the same if X; = —b. Hence, by
averaging over all possible values of b we get

P{X, =0 for some 1 < s <t}

:/ p1(0,0)P{X; =0 for some 1 <s<t|X; =b}db

e~ /2t=1) g | db.

— 00
o0 (oo}
_ 2/ 1 e_b2/2 2/ 1
o V2r b \27(t—1)
The substitution y = z/+/t — 1 in the inside integral reduces this integral to

> *© 1 2 2
4/ / — e~ "FY)/2 gy db.
o Jo-1)-1/z 2T

This integral can be computed using polar coordinates. Note that the region
{0 < b < o00,b(t—1)"1/2 < y < 0o} corresponds to the polar region {0 < r <
o0, arctan(y/t — 1)~! < § < 7/2}. Hence the probability equals

oo pmw/2 1 5
4/ / —e " /2rdfdr
0 arctan((v/T—1)-1) 27

4 u ct 1 ! /oore_rzﬂd
= — —arctan —— | — r
2 \/t—]. 271' 0

2
=1— — arctan

Example 2. We will show that (with probability one)
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First, we consider the limit taken over only integer times. Note that for n an
integer,

Xn: (Xl ‘X0)+"‘+(Xn—Xn—l)7

is a sum of independent, identically distributed random variables. It follows
from the (strong) law of large numbers that

. n
lim — =0.
n—oo N

For each n, let
M, =sup{|X; — X,| :n<t<n+1}.

If we can show that

M
lim —= =0,
n—oo M

we will be finished since for any ¢, if n <t < n + 1,
[ Xe| 1 Xel _ [ Xl + [Mn]
t T n = n

For any a > 0, symmetry and the reflection principle state that

oo
1
P{|Mo| > a} < 2P{M, > a} = 4/ e/ dp
a 2m
* 1
S 4/ e—za/2 dx
a 2m
= 8 e~/
aV2n
If we plug in @ = 2 (Inn)'/2, we get
8

P{|M,| > 2V <
{1Mn] 2 nn} < 2V2rInnn?

In particular, for all n sufficiently large, the probability is less than n=2. If
we let I, denote the indicator function of the event {|M,| > 2vInn} and

we find that E (I) < oo. This states that the expected number of times that
|My| > 2v/Inn is finite and hence that, with probability one, |M,| > 2+VInn
only finitely often. In particular, this implies that n='M,, — 0.
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8.3 Zero Set of Brownian Motion

In this section we will investigate the (random) set

It turns out that this set is an interesting “fractal” subset of the real line.
In analyzing this set we will use two important scaling results about Brow-
nian motion which will be proved in the exercises (see Exercises 8.7 and 8.8).

Scaling Properties. Suppose X; is a standard Brownian motion. Then,
(1) Ifa > 0, and Y; = a~/2X,;, then Y} is a standard Brownian motion.

(2) If X; is a standard Brownian motion and Yy = tX,,;, then Y; is a
standard Brownian motion.

In an example in the previous section, we proved that

2 1
P{ZN[1,t] #0} =1 —arctan NSt
As t — oo the quantity on the right-hand side tends to 1. This tells us that
with probability 1 the Brownian motion eventually returns to the origin, and
hence (with the help of the strong Markov property) that it returns infinitely
often. This means that the Brownian motion for large ¢ has both positive and
negative values.

What happens near ¢t = 07 Let Y; = tX,,;. Then Y; is also a standard
Brownian motion. As time goes to infinity in the process X, time goes to 0 in
Y. Hence, since X; has both positive and negative values for arbitrarily large
values of ¢, Y; has positive and negative values for arbitrarily small values of
t. This states that in any interval about 0 the Brownian motion takes on both
positive and negative values (and hence by continuity also the value 0)!

One topological property that Z satisfies is the fact that Z is a closed set.
This means that if a sequence of points t; € Z and t; — t, then t € Z. This
follows from the continuity of the function X;. For any continuous function,
if t; — ¢, then X;, — X;. We have seen that 0 is not an isolated point of Z,
i.e., there are positive numbers t; € Z such that ¢; — 0. It can be shown that
none of the points of Z are isolated points. From a topological perspective Z
looks like the Cantor set (see the example below for a definition).

How “big” is the set Z?7 To discuss this we need to discuss the notion of
a dimension of a set. There are two similar notions of dimension, Hausdorff
dimension and box dimension, which can give fractional dimensions to sets.
(There is a phrase “fractal dimension” which is used a lot in scientific litera-
ture. As a rule, the people who use this phrase are not distinguishing between
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Hausdorff and box dimension and could mean either one.) The notion of di-
mension we will discuss here will be that of box dimension, but all the sets we
will discuss have Hausdorff dimension equal to their box dimension. Suppose
we have a bounded set A in d-dimensional space R%. Suppose we cover A
with d-dimensional balls of diameter e. How many such balls are needed? If
A is a line segment of length 1 (one-dimensional set), then e~! such balls are
needed. If A is a two-dimensional square, however, on the order of €2 such
balls are needed. One can see that for a standard k-dimensional set, we need
€% such balls. This leads us to define the (box) dimension of the set A to be
the number D such that for small € the number of balls of diameter € needed
to cover A is on the order of e~ .

Example. Consider the fractal subset of [0, 1], the Cantor set. The Cantor
set A can be defined as a limit of approximate Cantor sets A,,. We start with
Ap = [0,1]. The next set A; is obtained by removing the open middle interval

(1/3,2/3), so that
w=od]uf2].

The second set Ay is obtained by removing the middle thirds of the two
intervals in A, hence

=P B

In general A, ; is obtained from A, by removing the “middle third” of each
interval. The Cantor set A is then the limit of these sets A,

Note that A, consists of 2™ intervals each of length 37™. Suppose we try
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to cover A by intervals of length 377,

k-1 k
3n 3|’
We need 2™ such intervals. Hence the dimension D of the Cantor set is the
number such that 2" = (37)~ P ie.,

In2
= — = .631.
D n3 63

Now consider the set Z and consider Z; = Z N [0,1]. We will try to cover
Z, by one-dimensional balls (i.e., intervals) of diameter (length) e = 1/n. For
ease we will consider the n intervals

[u,k], k=1,2,...n.

n n

How many of these intervals are needed to cover Z;? Such an interval is
needed if Z; N [(k —1)/n,k/n] # 0. What is

P(k,n) = ]P’{Zl n [5%1 S] # (Z)}?

Assume k > 1 (if k¥ = 0, the probability is 1 since 0 € Z). By the scaling
property of Brownian motion, Y; = ((k — 1)/n)_1/2Xnt/(k_1) is a standard
Brownian motion. Hence

k
P(k,n) = ]P’{Yt =0 for some 1 < ¢ < k_—_i}
This probability was calculated in the previous section,

2
Pk,n)=1- - arctan vk — 1.

Therefore, the expected number of the intervals needed to cover Z; looks like

n

Xn:P(k,n) =Z [1 - %arctan\/k—l .

k=1 k=1
To estimate the sum, we need to consider the Taylor series for arctan(1/t) at

t = 0 (which requires remembering the derivative of arctan),

1
arctan i g —t 4 O(t%).

In other words, for z large,

8|~

arctanz

Q
I
l
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Hence

~ 4
P(k,n) ~ 1+ / ~ 1) 24z~ =/n.
kz=:1 " Zm/k ) * 7r\/_

Hence it takes on the order of /n intervals of length 1/n to cover Zi, or, in
other words,

Fact. The fractal dimension of the zero set Z is 1/2.

8.4 Brownian Motion in Several Dimensions

Suppose X}, ..., X2 are independent (one-dimensional) standard Brownian
motions. We will call the vector-valued stochastic process

X, = (X}, X%

a standard d-dimensional Brownian motion. In other words, a d-dimensional
Brownian motion is a process in which each component performs a Brownian
motion, and the component Brownian motions are independent.

It is not difficult to show that X; defined as above satisfies the following:

(i) Xo=0;

(ii) for any s; <t < 89 <ty < -+ < 8, < ty, the (vector-valued) random
variables Xy, — X,,,... , X, — X;,_, are independent;

(iii) the random variable X; — X has a joint normal distribution with mean
0 and covariance matrix (¢ — s)I, i.e., has density f(x1,...,zq) equal to

< 1 e—w?/?r)...( 1 e—z§/2r): L a2
Vorr V2rr (2mr)d/2 ’

where r =t — s;
(iv) X is a continuous function of .

We could use (i) through (iv) as the definition of Xy, but we would quickly
discover that we could construct X; by taking d independent one-dimensional
Brownian motions. As in the one-dimensional case we let p;(z,v),z,y € R?
denote the probability density of X; assuming X, = x (it is clear how to
define a Brownian motion starting at any point in R¢),

1

—y—z|2
pt(1'7y) = W e ly | /Qt.

Again, this satisfies the Chapman-Kolmogorov equation

Ps+t(T,y) = /dps(w, z)pe(2,y) dzy - - - dzg.
R
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Brownian motion is closely related to the theory of diffusion. Suppose that
a large number of particles are distributed in R? according to a density f(y).
Let f(t,y) denote the density of the particles at time ¢ (so that f(0,y) =
f(y)). If we assume that the particles perform standard Brownian motions,
independently, then we can write the density of particles at time t. If a particle
starts at position x, then the probability density for its position at time ¢ is
pi(x,y). By integrating, we get

ft) = [ 1) pua.y) doy -+-das

The symmetry of Brownian motion tells us that p;(x,y) = p;(y, ). Hence we
can write the right-hand side as

/Rd f(x)pe(y, x) dzy - - - dzg.

The right-hand side represents the expected value of f(X;) assuming Xy = y.
We can then write this,

fty) = EY[f(X)]-

The notation E¥ is used to denote expectations of X; assuming Xo = y.

We will now derive a differential equation that f(t,z) satisfies. Consider
Of /| 0t; for ease we will take t = 0, d = 1. If f is sufficiently nice, we can write
the Taylor series for f about x,

Fl) = @)+ @)y - 2) + 55"y — ) + ol(y - 2,

where o(-) denotes an error term such that o((y —)?)/(y —z)? - 0 as y — .
Therefore,

O yim LE=[F(X,) - F(Xo0)]

ot t=0 01
= lim < [() E*[X; — 2]
b3 £1@) BT~ 2]+ o (X, - 2))].

We know that E?[X; — x] = 0 and E*[(X; — z)?] = Var(X;) = ¢. Also since
(X; — x)? is of order ¢, the term ¢t~1o(-) tends to 0. Hence we get

of 1

ot |,_, = é'f”(x)-

The same argument holds for all ¢ giving

of 10%f

ot 20z%
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Similarly, we can extend this argument to d dimensions and show that f
satisfies the equation

where A denotes the Laplacian,

d
Af(t,.’l?],...,flfd Z—Q—

This equation is often called the heat equation. One can find a similar solution
to the heat equation with diffusion constant D,

af _ D,

ot 2f’

by considering Brownian motions with variance parameter o2 = D.
Sometimes it is useful to consider the heat equation in a bounded domain.
Let B be a bounded region of R? with boundary 0B.

Imagine an initial heat distribution on B, f(z),x € B is given. Suppose
also that the temperature is fixed at the boundary, i.e., there is a function
9(y),y € OB representing the fixed temperature at point y. If u(¢,z) denotes
the temperature at  at time ¢, then u(t, z) satisfies

. Ou D
(i) E—EAU, z € B,

(i1) u(t,z) =g(z), =€ IB,

(iil) u(0,z) = f(z), =€ B.

The solution of (i) through (iii) can be written in terms of Brownian motion.
Let X; be a d-dimensional Brownian motion with variance parameter 0% =D.

Let 7 = 795 be the first time that the Brownian motion hits the boundary
0B,

7 =inf{t: X; € 9B}.
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Then the solution can be written as
u(t,z) =E* [f(X)I{r >t} + g(X ) I[{r < t}].

In other words, at time ¢, take the average value of the following: f(X;) for
the paths that have not hit 9B and g(X;) for those paths that have hit 9B.
As t — oo, the temperature approaches a steady-state distribution v(x) with
boundary value g(z). The steady-state solution satisfies

(i) Av(z) =0, z€ B,

(ii) v(z) = g(x), x € OB.
The solution is given by

v(z) = lim u(t,z) =E*[g(X,)].

t—oo

Example 1. Let d = 1 and suppose that B = (a,b) with 0 < a < b < 0.
Then 0B = {a,b}. Take a < z < b and consider

7 =inf{t: X; = a or b},

where X; is a standard Brownian motion. Let g be the function on 9B,
g(a) =0,g(b) = 1. Then

v(z) = E*[g(Xr)] = P{X, = b}

(here we have used P* to denote a probability assuming Xo = z). We know
by above that v(z) satisfies

d*v
w=0, a<l‘<b,

v(a) =0, wv(b)=1.
We can solve this differential equation easily and we get

r—a
b—a’

v(z) =

This is the Brownian motion analogue of the gambler’s ruin estimate.

Example 2. Let d = 1 and suppose that B = (0, 7) and that Xo =y € (0, 7).
Let u(t, z) be the solution of the heat equation

ou_ 1 0u
ot 2 0z
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with boundary conditions u(¢,0) = u(¢,7) = 0 and such that as ¢ goes to
0, u(t,z) approaches the “delta function” at y. Then u(¢,z),0 < z < 7 also
denotes the density of the Brownian motion restricted to those paths that have
not left (0,7). The function u can be found explicitly using the technique of
separation of variables. First, it is easy to check that for all integers n, the
function e~tn*/2 sin(nx) satisfies the heat equation and equals zero on the
boundary. Therefore, for any choice of constants C,,, the function

[ee)
u(t,z) = Z Cpein/2 sin(nz),

n=1

satisfies the heat equation and the boundary condition. If we want u(0,z) =
f(z), then we need to choose the constants so that

flz) = i Cyp, sin(nz).
n=1
Since
/07T sin(nz) sin(mz) de =0 if n#m,
we can see that C,, must satisfy
/07r f(z) sin(nz) de = C, /07r sin?(nz) dr = gC"‘

In the case where f is the delta function at y, we choose

Cp = %/OW f(z) sin(nz) de = % sin(ny).

Hence,
2 — 2
u(t,z) = = E e~ ""/2 sin(ny) sin(nzx).
T
n=1
Ast — oo,

—t/2

2
u(t,x) ~ —e siny sinz.
m

Example 3. If d > 1, D = 1, g = 0, then one can try to write the solution of
the heat equation in the form

u(t,z) = Z C, e *nt/? on(x),

n=1
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where the functions ¢, are eigenfunctions of A with eigenvalue —\, and
Dirichlet boundary conditions, i.e.,

App(z) = =M dn(z), z€ B  ¢(z) =0, z € OB.

In order to do this, we need to find a collection of such eigenfunctions that
are orthogonal,

/B¢n(~’f)¢m($) dry ---drg =0, n#m,

and are complete, i.e., each f can be written as
o0
f@) =S Cunla).
n=1

For a number of regions, such as balls in R?, the eigenfuctions and eigenvalues
are known. For a much wider class of regions, one can prove the existence of
such a collection of functions. See a book on partial differential equations for
more information. If B is a bounded, connected region, the eigenfunction ¢,
associated to the largest eigenvalue —\; (the eigenvalue of smallest absolute
value) can be chosen so that if Xy = y, the density u(¢,x) satisfies

u(t,z) ~ e M2 ¢ (y) ¢y (x), t— oo.

In the previous example, A\; = 1 and ¢1(z) = \/2/7 sinz.

8.5 Recurrence and Transience

In this section we ask whether the Brownian motion keeps returning to the
origin. We have already answered this question for one-dimensional Brownian
motion; if X; is a standard (one-dimensional) Brownian motion, then X, is
recurrent, i.e., there are arbitrarily large times ¢t with X, = 0.

Now suppose X; is a standard d-dimensional Brownian motion. Let 0 <

R; < Ry < o0 and let B = B(R;, Rs) be the annulus
B={zeR%: R <|z| <Ry},

with boundary

OB = {z € R?: |z| = R; or |z| = Ry}.
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Suppose x € B. Let f(z) = f(x, R1, R2) be the probability that a standard
Brownian motion starting at = hits the sphere {y : |y| = Rz} before it hits
the sphere {y : |y| = R1}. If we let

T =719 = inf{t : X; € 0B},
then we can write

f(z) =E*[g(X7)],

where g(y) = 1 for |y| = Ry and g(y) = 0 for y = R;. We saw in the last
section that f is the function satisfying

(i) Af(z)=0, ze€ B,

(i) f(y) =0, lyl = Ry; fly) =1, |yl = Ra.

To find f, we first note that the symmetry of Brownian motion implies f(z) =
¢(|z|) for some ¢, i.e., the value of f depends only on the absolute value of
x. We can write the equation (i) in spherical coordinates. The form of the
Laplacian A in spherical coordinates is somewhat messy; however, it is not so
bad for functions ¢(r) that depend only on the radius. One can check that

d?>¢ d—-1d¢
A = — —.
¢(r) dr? r dr
The general solution to the equation

d—1
(l)”(?") + —T—¢,(T) =0

is given by

_Jealnr+e, d=2,
¢(r) = {clr2_d +c¢o,d > 3.

[The second-order equation for ¢(r) is a first-order equation for ¥(r) = ¢'(r)
which can be solved by separation of variables.] Putting in the boundary
conditions ¢(R;) = 0 and ¢(Rz) = 1, we see that

In|z| —InR;

f(z) = ¢(|z]) = Ry, IR, d=2,
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Ry
Ry —-Ry 4T T

f(z) = o(|z]) =

Consider now the two-dimensional case. Let x € R? and suppose that a
Brownian motion starts at = (or that the Brownian motion is at x at some
time t). Take any € > 0, and ask the question: What is the probability that
the Brownian motion never returns to the disc of radius e€ about 07 The
argument above gives us the probability of reaching the circle of radius Rs
before reaching the disc. The probability we are interested in is therefore

In|z| —Ine

lim P?{|X;| = Rz before | X;| =€} = lim = 0.
Ry —o00 R

2—oo In Ry — Ine

Hence, with probability one the Brownian motion always returns to the disc
of radius € and hence it returns infinitely often and at arbitrarily large times.
Does it ever return to the point 0, i.e., are there times ¢ with X; = 0?7 Again,
start the walk at x # 0. If there is a positive probability of reaching 0, then
there must be an Ry such that the probability of reaching 0 before reaching
the circle of radius Ry is positive. But this latter probability can be written
as

1 -1
lin%)]Pz{|Xt| = ¢ before | X;| = Ry} = lirr(l) [1 M——E]

B InRy —Ine

Hence the Brownian motion never actually returns to 0. To summarize, the
Brownian motion in two dimensions returns arbitrarily close to O infinitely
often, but never actually returns to 0. We say that the Brownian motion in
two dimensions is neighborhood recurrent but not point recurrent.

Now consider d > 3. Again we take ¢ > 0 and ask what is the probability
that the Brownian motion starting at x never returns to the ball of radius e.
If |z| > e, this is given by

2—d 2—d d-2
. €T = €

A L

Rz—oo ¢2=d — R ||

Since the probability is less than 1, we can see that eventually the Brownian
motion escapes from any ball around the origin and hence goes off to infinity.
We say that in this case the Brownian motion is transient.

8.6 Fractal Nature of Brownian Motion

Let X; be a standard d-dimensional Brownian motion and let A represent
the (random) set of points visited by the path,

A= {zeR?: X, =z for some t}.
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In this section we will consider the dimension of the set A for d > 2.

In order to consider a bounded set, let Ay = AN{z : |z| < 1}. Fix an € and
let us try to cover A; with balls of diameter e. First consider the whole ball
of radius 1, {z : |z| < 1} and cover it by balls of diameter e. The number of
such balls needed is of the order of ¢~ (which is consistent with the fact that
the ball is a dimension d set). How many of these balls are needed to cover
Aqp?

First, consider d = 2. By the argument given in the previous section, every
open ball is visited by the Brownian motion. Hence A intersects every ball
and all the balls are needed. Hence the dimension of A is two.

Now consider d > 2. Take a typical ball of diameter e. What is the prob-
ability that it is needed in the covering, i.e., what is the probability that
Brownian motion visits the ball? By the calculations done in the previous
section, a ball of radius €¢/2 around a point x (with |z| > ¢/2) is visited with
probability (e/2|x|)?~2. Hence, if € is small and |z| is of order 1, the prob-
ability is about a constant times €?~2. Since each of the about ¢~¢ balls is
chosen for the covering with probability about €2, the total number of balls
needed is about €?~2¢~¢ = ¢~2. Hence the dimension of the set A is two. We
have just sketched the idea behind this following fact:

Fact. The path of a d-dimensional Brownian motion (d > 2) has fractal
dimension two.

8.7 Scaling Rules

The fractal nature of Brownian motion is closely related to the scaling
rule: if X; is a standard one-dimensional Brownian motion and b > 0, then
Y, = b=1/2X,, is also a standard Brownian motion. A process satisfying the
properties discussed on page 173 must satisfy this scaling rule. Suppose that
we were willing to give up the condition that X, is a continuous function of .
Could we get different scaling laws? Is there a process that is symmetric about
zero satisfying the other conditions that has a different scaling exponent A by
which we mean that Y; = b=*X}; has the same distribution as X;?

Let us suppose that such a process exist with scaling exponent A. If we
assume that X; has a finite variance then A\ must equal 1/2. This follows
from the simple calculation

Var(Xy) = Var[Xy/n, + (Xo/n — Xi/n) + -+ (Xnm — X(n-1)/n)]
=nVar(X,/,) = nVar(n=* X;) = n!=2* Var(X,),

which implies that A = 1/2.
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Let
Mn = max {le/nIv IXQ/n — Xl/n|,- ey |Xn/'n - X(n—l)/nl} .

If the paths have jumps, then we expect P{M, > ¢} not to go to zero as
n — oo for some value of e. However, assuming the paths are not too wild, we
would expect that P{M,, > K} would be less than, say 1/2, for some value of
K. Note that

P{Myn <1} =P{|Xj/n — X(j-1y/ul <7 forj=1,... n}
=P{[Xy/n| <r}"
= P{n-/\ |X1| < T}TL — IP{IXII < rn)‘}",

If we recall that (1 — 2)" — e, we can see that a good candidate for the

distribution of X; would be one satisfying P{|X;| > n*} ~ ¢n™!, or

P{IX1| > y} ~ ey /™

If A < 1/2, then it is not difficult to check that such an X, would have a finite
variance. But this implies that A = 1/2. Hence there are no examples with
A < 1/2. For A > 1/2, there are examples and these are called the symmetric
stable distribution and the corresponding processes are called symmetric stable
processes. The density of these processes cannot be given explicitly except in
the case A = 1 which is the Cauchy distribution with density

fla) = ——

=——7, —00<zT<00.
(1 + z?)

8.8 Brownian Motion with Drift

Consider a d-dimensional Brownian motion X; with variance parameter o2
starting at z € R%. Let u € R? and

Y = X + tu.

Then Y; is called d-dimensional Brownian motion with drift u and variance
parameter o2 starting at . One can check easily that Y; satisfies

(i) Yo = x;

(ii) if s <t <89 <tg <+ <8 <y, then Vs —Y5,,...,Y;, — Y, are
independent;

(iii) Y; — Y; has a normal distribution with mean u(t — s) and covariance
matrix o?(t — s)I;

(iv) Y; is a continuous function of .
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The motion Y; consists of a “straight line” motion in the direction p with
random fluctuations. Note that E (Y;) = tpu.
The density of Y; given Yy = z, p;(z,y) is easily seen to be

pe(T,y) = { !

o ly—a—tul?/2t0?
2mo?t)d/2

This satisfies the Chapman—Kolmogorov equation,
Ps+t(2,y) = /d ps(@,2) pe(2,y) dz1 - - dza.
R

Suppose we start with a density on R?, f(x). Consider the function

ft,2) = E°[f(Yy)].

For ease we will consider the case d = 1,t = 0. We again write f in a Taylor
series about x,

Jw) = @)+ 1)y = 2) + 50" @) — 0 +olly - 2)%).
Hence,

E*[f(V)] = f(z) + f'(z) E¥[Y; — a]

+ 31" @) EF[(Y: - )] + ofE (Y, — 2)?).

A Brownian motion with drift 4 and variance parameter o2 starting at = can
be obtained by letting Y; = X; + tu + =, where X, is a (zero drift) Brownian
motion with variance parameter o2 starting at 0. Hence,

E*[Y: — 2] = E[X¢ + tu] = tu,

E=((Y, — 2)°) = E[(X, + t)?] = [E (X, + tp)]? + Var(X, + tn)
= (tu)? + ot
Also, since (Y; — z)? is order t, o((Y; — z)?) is o(t). Therefore,

of | _ i ESF(V)] - E°[£(Yo)]
ot|,_, t=0 t

— uf'@) + % (x).

We see that the inclusion of a drift has added a first derivative with respect
to x.
In d dimensions, if the drift u = (u1, ... , pa), we would get

of K of o
ot ;M@xi + 7Af'
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8.9 Exercises

8.1 Let X be a normal random variable, mean 0 variance 1. Show that if
a>0

—a?/2

P{X >a} < e

av2rm

(Hint:

o0 oo
/ e = /2 4 < / e 9%/2 dg.)
a a

8.2 Let X,1,...,Xnn be independent normal random variables with mean
0 and variance 1/n. Then

X=Xp+-+ Xaun,
is a normal random variable with mean 0, variance 1. Let
M, = max{|Xn1|,... ,| Xnnl}-
Show that for every € > 0,

lim P{M,, > ¢} =0.

n— 00

(Hint: it will be useful to use the estimate from Problem 8.1. It may also be
useful to remember that if Y is normal mean 0, variance o2, then ¢~'Y is
normal mean 0, variance 1.)

8.3 Let X,1,..., Xnn be independent Poisson random variables with mean
1/n. Then

X =Xnu+ -+ Xnn,
is a Poisson random variable with mean 1. Let
M, = max{Xn1,... , Xnn}.
Find
lim P{M, > 1/2}.
n—oo
8.4 Let X, denote a standard (one-dimensional) Brownian motion. Find the

following probabilities. Give your answers as rational numbers or decimals to
at least three places.
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)X2>X1>X3
) X =0 for some t with 2 <¢ <3

e) Xy <4foralltwith0<t<3

f) X; > 0 for all ¢ > 10.
8.5 Random variables Y7, ... , Y, have a joint normal distribution with mean
0 if there exist independent random variables X1, ... , X,, each normal mean

0, variance 1, and constants a;; such that
Yi=auXi+- - +anX,.

Let X; be a standard Brownian motion. Let s1 < 85 < --- < s,. Explain why
it follows from the definition of a Brownian motion that X,,,...,X,, have a
joint normal distribution.

8.6 If Y1,...,Y, have a joint normal distribution with mean 0, then the
covariance matrix is the matrix I whose (i, j) entry is E (Y;Y;). Let X; and
$1,... ,8n be as in Exercise 8.5.

(a) Find the covariance matrix I for X, ,... , X, .
(b) The moment generating function (mgf) for Y7,...,Y, is the function
f :R™ — R defined by

Flt1, ... ty) = E[eh it ttaYn],

Find the mgf for Y7,...,Y, in terms of its covariance matrix I'.

(c) If two distributions have the same mgf, then the two distributions are
the same. Use this fact to prove the following: if Y¥7,...,Y, have a mean 0
joint normal distribution, and E[Y;Y;] = 0 for all ¢ # j, then Y;,...,Y;, are
independent.

8.7 Suppose X; is a standard Brownian motion and Y; = a~'/2X,, with
a > 0. Show that Y; is a standard Brownian motion.

8.8 Suppose X; is a standard Brownian motion and Y; = tX;,,. Show that
Y, is a standard Brownian motion. (Hint: it may be useful to use Exercise

8.6 (c).)

8.9 Let X; be a standard Brownian motion. Compute the following condi-
tional probability:

IFD{XQ >0|X1 >0}

Are the events {X; > 0} and {X; > 0} independent?
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8.10 Let X; and Y; be independent standard (one-dimensional) Brownian
motions.

(a) Show that Z; = X; — Y; is a Brownian motion. What is the variance
parameter for Z,?

(b) True or False: With probability 1, X; = Y; for infinitely many values
of t.

8.11 Let X; be a standard (one-dimensional) Brownian motion starting at
0 and let

M =max{X;:0<t<1}.
Find the density for M and compute its expectation and variance.

8.12 Let X; be a standard (one-dimensional) Brownian motion starting at
0 and let

T =min{t:|X;| =1}, T =min{t: X, =1}.
(a) Show that there exists positive constants ¢, § such that for all ¢ > 0,
P{T >t} < ce P

Conclude that E [T} < oc. )
(b) Use the reflection principle to find the density of T, and show that

E[T] = co.
8.13 Let X;, T be as in Exercise 8.12 and let
T* =min{t: X; =1 or X; = —3}.

(a) Explain why X7 and T are independent random variables.
(b) Show that T* and Xp. are not independent.

8.14 Let X; be a standard (one-dimensional) Brownian motion started at a
point y chosen uniformly on the interval (0,1). Suppose the motion is stopped
whenever it reaches 0 or 1, and let u(¢,2),0 < z < 1 denote the density of
the position X; restricted to those paths that have not left (0,1). Find u(t, )
explicitly in terms of an infinite series and use the series to find the function
h and the constant 3 such that as t — oo,

u(t, ) ~ e Pt h(x).

8.15 Let the Cantor-like set A be defined as follows. Let Ag = [0, 1],

2 3
a2 ofn].
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and A, is obtained from A, _; by removing the “middle fifth” from each
interval in A,,_,. Let

What is the fractal dimension of A?

8.16 Suppose that X has a Cauchy distribution, i.e., has density

1
(a) Ifa>0,let Y =a~!X. What is the density of Y'?
(b) Suppose that Y, Z are independent random variables each with a Cauchy
distribution. Show that the average (Y +Z)/2 also has a Cauchy distribution.

(c) For which r > 0 is E [|X|"] < c0?

8.17 Let X, = (X}, X?) denote a standard two-dimensional Brownian mo-
tion. Let

oy=min{s: XZ=1t}, Y, = X;w

(a) Which of the following properties does the process Y; satisfy?

(i) Yo = 0;

(i) For 51 < t; < 89 <ty <--- < s, < tp, the random variables Y;, —
Ys,,..., Ys, —Ys, are independent;

(iii) If 0 < s < t, then the distribution of Y; — Y; is the same as that of
Yi_s;

(iv) Y} is a continuous function of ¢.

(b) For which A > 0 does the process Z; = a~* Yy, have the same distribu-
tion as Y,;?
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Stochastic Integration

9.1 Integration with Respect to Random Walk

The goal of this chapter is to introduce the idea of integration with respect
to Brownian motion. To give the reader a sense for the integral, we will start
by discussing integration with respect to simple random walk. Let X;, X»,...
be independent random variables, P{X; = 1} = P{X; = —1} = 1/2 and let
S,, denote the corresponding simple random walk

Sp=X1 4+ X

As in Section 5.2, Example 3, we think of X,, as being the result of a game
at time n and we can consider possible betting strategies on the games.

Let F,, denote the information contained in Xy,...,X,. Let B, be the
“bet” on the nth game. B, can be either positive or negative, a negative
value being the same as betting that X, will turn up —1. The important
assumption that we make is that the bettor must make the bet using only the
information available up to, but not including, the nth game, i.e., we assume
that B,, is measurable with respect to F,_;. The winnings up to time n, Z,,
can be written as

n n n
Zn = Z B; X; = ZBi[Si - Si—1) = ZBiASi»
i=1 i=1 i=1
where we write AS; = S; — S;_1. We call Z, the integral of B,, with respect
to S,.

There are two important properties that this integral satisfies. The first
was shown in Section 5.2, Example 3: the process Z, is a martingale with
respect to F,, i.e., if m <n,

E(Z, | Fn) = Zpn,.

In particular, E (Z,) = 0. The second property deals with the second moment
of Z,. Assume that the bets B, have finite second moments, E (B2) < oc.
Then

Var(2,) - B(22) = Y B(B?)
i=1

199
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To see this, we expand the square to write
n
i=1 1<i<j<n

Note that X? = 1 and hence

n n
E (Z B? Xf) =Y E(B).
i=1 i=1
Suppose ¢ < j. Then B;, X;, B; are all measurable with respect to F;_; while
X; is independent of F;_;. Using (5.3), we see that
E(B;B;X;X; | Fj—1) = BiB; X; E(X; | Fj—1) = B;B; X;E (X;) = 0,
and hence

E(B:B; X;X;) =E [E(B;B; X;X; | F;_1)] =0.

9.2 Integration with Respect to Brownian Motion

Here we describe a continuous analogue of the discrete integral given in
the last section. Instead of a simple random walk, we will take a standard
(one-dimensional) Brownian motion, which we will write W;. We can think
of this as a continuous fair game such that if one bets one unit for the entire
period [s, ] then one’s winnings in this time period would be W, — W;.

Let Y; denote the amount that is bet at time t. What we would like to do
is define

¢
Zy :/ Y, dWs.
0

The process Z; should denote the amount won in this game up to time ¢ if the
amount bet at time s is Y. It is a nontrivial mathematical problem to define
this integral. The roughness of the paths of the Brownian motion prevent one
from defining the integral as a “Riemann-Stieljes” integral.

We will make two assumptions about our betting strategy Ys. The first
assumption is that E (Y;?) < oo for all ¢ and for each ¢,

t
/ E(Y?) ds < oo.
0

This condition will certainly be satisfied if we restrict ourselves to bounded
betting strategies. The second assumption is critical and corresponds to our
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assumption in the discrete case that the bettor cannot look into the future to
determine the bet. Let F; denote the information contained in the Brownian
motion up through time ¢. We assume that Y; is F;-measurable. In other
words, the bettor can see the entire Brownian motion up through time t
before choosing the bet, but cannot see anything after time ¢.

It is not too difficult to define the integral if we make the restrictive as-
sumption that the bettor can change the bet only at a certain finite set of
times, say t; < tg < --- < t,. The bets then take the form

YOa 0 <t< tla
Yi, t1 <t <ty
Y: = :
Y, thn <t < oo
Here Yp,...,Y, are random variables with E(Y?) < oo, and Y; must be

measurable with respect to F;, (where ty = 0). We will call a betting strategy
that can change at only a finite number of times a simple strategy. For a
simple strategy, we define the stochastic integral for ¢; <t < t;41 by

t J
Zt=/ Ys dWszz}/i—l[Wtz —Wt1_1]+)/j[Wt—WtJ]'
0

i=1

There are three important properties that the stochastic integral of a simple
strategy satisfies. The first is linearity: if X; and Y are two simple strategies
and a, b are real numbers, then aX; + bY; is a simple strategy and

t t t
/ (aX, + bY,) dW, = a/ X, dW, +b/ Y, dW,.
0 0 0

This can be easily checked.

The other two properties are direct analogues of the properties of the dis-
crete stochastic integral of the previous section. We say a continuous-time
process Z; is a martingale with respect to F; if each Z; is F;-measurable;
E (|Z:|) < oo for each ¢; and if s < ¢,

E(Zt Ifs)ZZs- (91)

The second property is that the stochastic integral Z; as defined above is
a martingale with respect to the information F; derived from the Brownian
motion. It is easy to see that Z; is F;-measurable and the condition E (|Z;|) <
oo follows from the fact that the second moments of the Y; exist. We will now
verify (9.1). First assume t; < s <t < t;4; for some j. Then we can write

Zt = Zs + Y}[Wt - Ws]
Since Y; and Z, are Fs-measurable and W; — W; is independent of F,

E(Z | F)=Zs +Y,EW, — W, | F) = Zs + V;E(W, — Wy) = Z.



202 Introduction to Stochastic Processes
In particular, if t; <t < tj44,

E(Zt]“ | ft) = Zt, E(Zt | ft]) = Zt]-
Note that E(Zt | .7:,:]_1) = E(E(Zt | th) | ft]—l) = E(Zt] ‘ ft]_l) = Zt]_l,
and by iteration we can see that for all ¢ < j, F(Z; | Ft,) = Z;,. Finally, if
t; < s <tjp1,t; <t <tj4q for some ¢ < j, then

E(Z | Fs) = E(E(Ze | Foon) | Fs) = E(Zi,y, | Fs) = Zs.

This gives (9.1).

The third property gives a way to calculate the second moment,

E(Z?) = /OtIE(Yf) ds. (9.2)

The right-hand side is a standard calculus “ds” integral. To prove this, assume
that t; <t < t;;1. Note that E (Y?) is a step function in s so
t Jj—1
| B0 ds = B0 - ) + O 1),
0 =0

If we expand the square, we see that
J
zi = ZYi{l[Wtz — Wi, ]* + YW, — Wy, ]? + (cross terms),
i=1

where “cross terms” represents a sum of terms of the form

Yi—lyk—l[Wtz - Wtz~l][Wtk - Wtk—l]’ i <k,

or
Yi Y [Wy, = Wy, _ (W — W)
Ifi <k,
E(Yi—lyk—l[Wtz - Wtz—l][Wtk - Wtk—l] | ftk—l)
= i-lYk_l[Wtz - Wtz—l]E(Wtk - Wtkq |‘Ftk—l)
=Yi1Yea[We, =Wy, | JE(Wy, — Wi, ) =0,
and hence

E(Yio1 Y1 [We, = Wy, | |IW — Wy, ) =

E[E(Yi—lyk—l[wtz - Wt1—1][Wtk - Wtk—l] | ftk—])] = 0.
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Similarly,
E (Yi1Y;[Wi, — W, [[We = Wj]) = 0.

Therefore
7
E(22) =Y E(Y2,[W, - We,_,]) + E(Y[W, - W, ]?).
=1

Note that

E[)/iQ—I[Wtz - Wtz—1]2 | ftz—l] = }/zQ—IE[(Wtz - Wt1—1)2 | ‘th—1]
= Y2 E[(W,, - W,,_,)?]
= Y2 (t —tia).

Hence,

E[Y2 Wy, =W, )’] = E(B[Y2,[We, =Wy, )2 | i)
=E (Y2 )t —tic1).

Similarly,
E YW, — Wy, ] = E(Y7)(t - t;).

This proves (9.2).

To define the stochastic integral for betting rules Y; that are not simple,
we do the standard mathematical procedure for defining continuous objects—
approximate by discrete and take a limit. Let Y5 be measurable with respect
to Fs, satisfying the second moment conditions listed above. A little more
must be assumed about the Y; to be mathematically precise: the paths of Y;
(i.e., Ys considered as a function of s) should be right continuous and have
left limits; we will not worry about this in our informal treatment. For each
n > 0, define the approximate strategy Ys(") by

b

k/n
Ys(")zn/ Y, dr, E<S§k+1
(k=1)/n n n

where we set Ys(") = 0 for s < 1/n. We have arranged the approximation so

that for each ¢, Ys("), 0 < s <t is a simple strategy that is Fs-measurable.
The key estimate that can be proved (we will not do it) is that

v{M Y,

in the sense that for each ¢

t

lim [ E([Ys—Y™]?)ds=0.

n—0o0 0
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This allows us to define the stochastic integral

t
Zy =/ Ys dWs,
0

by saying that Z; is the mean-square limit of the random variables
t
zZ"M = / Y™ dw,.
0

The first and third properties of the stochastic integral allow this definition
to work since as n, m — oo,

t
E (2" - Z(M]P) = /0 E([Y{” - Y™ ds — 0.

In the process of showing the limit exists, one also shows that the three
properties of the integral still hold.

Linearity:

¢ t t
/ [aXs + bY;] dWs:a/ X dWs+b/ Y, dWs.
0 0 0
Martingale Property: Z; = fot Y, dWs is a martingale with respect to F;.

In particular, E(Z;) =0 for all t.

Second Moment Calculation:
t

Var(/ stWs) =E
0

The relationship

(/Ot Y, dWs>2] =/OtIE[Y82] ds.

t
Zt =/ Ys dWs
0

is often written in the differential form
dZt = Y} th

The process Z; can be thought of as a process that at time ¢ looks like a
Brownian motion with variance parameter Y;? (recall that if W, is a standard
Brownian motion, then oW; is a Brownian motion with variance parameter
02.) Sometimes one has a process

t t
Zt::/ Xsds+/ Y, dWs,
0 0
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where the “ds” integral is a standard calculus integral. In differential form
this is written

dZt = Xt dt + }ft th

This represents a process that at time ¢ looks like a Brownian motion with
drift X, and variance parameter Y;2.

9.3 1to’s Formula

How does one calculate stochastic integrals? As an example, consider the
integral

t
Zy :/ Ws dWs.
0

W is Fs-measurable and this integral is well defined. One might hope that
standard calculus rules would work for stochastic integrals in which case we
would have

/tW ch—IWQ—IWQ—IW2
0 s s_2 t 2 0_2 t-

However, a quick examination of this equation shows that it cannot be true:
the left-hand side is a random variable with expectation 0 but the right-hand
side has expectation ¢/2. In this section, we derive a formula that will allow us
to calculate this integral exactly. This formula is usually called 1t6’s formula
and it is the fundamental theorem of stochastic calculus.

Let us start by reviewing the ordinary fundamental theorem of calculus.
Suppose we have a continuously differential function f(¢). Around each tq we
can expand f(t),

f(t) = f(to) + f'(to)(t — to) + olt — to).
We can write f(t) as a telescoping sum

—r0+ S [ () - (3)]

J

We now use the Taylor’s series about jt/n to write

(521 (2)r (B ()
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and

As n — oo the second term on the right tends to 0 and the first term tends
to the integral of f’. We therefore get

t
1) =50 = [ fs)ds.
which we all know very well.

Now let W; be a Brownian motion, and f a function with at least two
continuous derivatives. At each o we can expand f(z),

£(2) = F(@o) + F'(z0) @ — 0) + 5 f(@0) & = 20)? +o{(z — 20)?).

Write f(W;) as a telescoping sum,

FWe) = £(Wa) + S [FWisa,) — FOW,,)
=0

By using the Taylor series expansion about W,, we can write

f(WJ%t) = f(WJ".t) + f/(W%t)[WJ%lt - W{;t]

1., 1
+§f (W%t)[Wg%t - W%t]Q +to (E) .

The o(-) is smaller than order n~! since [W 11, — W, ,|? is of order (t/n). We
then get

n—1 n—1
1 1
g 2 S W)W =Wy P42 o (z)

As n — o0, the third term on the right goes to 0. Since f’ is continuous, the
first term will approach

/ P W) aw,.
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To see what the second term converges to, let us consider the general ques-
tion of the limit of

n—1
Z Q(W%t)[wl%t - W%tlzy
j=0

where ¢ is a continuous function. First consider the case where g is identically
1. Let

n—1
gn) = Z[W’%lt - W%t]Q-
=0

The limit
Q. = lim Q"

is often called the quadratic variation of Wy. W11, — W,,|? has the same
distribution as (¢/n)U?, where U is normal mean 0, variance 1. Note that

E(U?) =1 Var(U?) =EU*) - [E(U?)]?=2.

Hence, since the increments of W are independent,

n—1
E(Q") =Y E(Wun, - Wy, ]*) =1,
=0
)y _ 2 2y _ 2t7
Var(Q; ') = ZVar([WJ%lt ~ W%t] ) = nVar((¢/n)U*) = -

=0

As n — o0, the expectation of Qg") stays constant but the variance goes to
0. In other words, the limiting random variable Q) is just a constant, and the
quadratic variation of Brownian motion up to time ¢ is the constant random
variable equal to t.

For any g let

n—1
Q) =D gt)Wass, — W )2,
3=0

and
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then

Qilg) = lim Q" (g)

BN ()
= lim @Q;" " (g)
k—o0
m—1 k—1
= lim u W] t E sz+z+lt - sz+1t]2
k—o0 km km
3=0 1=0
m—1 k—1
= Z u hm Z[W&Lﬂt - W&mt]Q.
km km
3=0 2—0

The result about quadratic variation tells us that

k-1
lim Z[Wk1+1+1t Wﬁit]

k—oo
Hence
m—1
t
u W-Lt

m’
j=0

Now assume g is continuous. For each n, let g, be the step function

j 7+1
=g(t Tt<s< ——t.
gn(s) g( )7 n < n
Note that
1Q:(9) — Qi(gn)| < llg — gnllQt = tllg — gnll,
where

lg — gnll = sup |g(s) = gn(s)|.
0<s<t

The continuity of g implies that ||g — gn|| — 0 as n — oco. Hence
n—1 j ¢
Qug) = Jim Qulgr) = Jim 3 (Z) 5
]:

The last expression is the usual representation of the integral of g as a limit
of Riemann sums. Therefore, if g is continuous,
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Note that if h is continuous then since W; is continuous, the function g(t) =
h(W) is continuous. If we plug this result into (9.3) we can conclude the
following.

Ito’s Formula. If f is a function with two continuous derivatives, and W,
is a standard Brownian motion,

1% = s0) = [ pv) awe g [ o s

This formula is sometimes written in the differential form,

df(Wt) = f/(Wt) th + %f//(Wt) dt
Example 1. Let f(t) = t2. Then f/(t) = 2t, f”(t) = 2, and

t t
1
W£=/2Wdes+—/2ds,
0 2 0

or

¢ 1, 1
o Ws dWS:EWt —Et

This turns out to be a particularly nice example; in general, one cannot use
It6’s formula to calculate integrals exactly.

Example 2. Consider the process
Xt = eW” .

This process is called geometric Brownian motion and is often used to model
stock prices. Ito’s formula with f(t) = e’ says that

t 1 t
Xt—1=/ eWS dWs+—/ eWsds.
0 2 Jo

In other words X; satisfies the stochastic differential equation

1
dXt = Xt th + §Xt dt

9.4 Extensions of I1t6’s Formula
Suppose W; is a standard Brownian motion and Z; satisfies

dZ, = X, dt + Y, dW,, (9.4)
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where X,Y; are Fi-measurable and have continuous paths. In other words,
t ¢
Zt=Z0+/ Xsds+/ Y, dWs.
0 0
If R; is F;-measurable we define fot R, dZ, by

t t
/dezs=/ R, (X, ds + Y, dWy)
0 0

¢ t
:/ RsXsds—i—/ RsYs dW;.
0 0

Suppose f has two continuous derivatives. As in the previous section we can
write

n—1

F(Ze) = 1(Zo) = Y f(Z3)|Zaz1, — 23]

Jj=0

+

N =

n—1 n—1
Zf// th)[ZL_t th +Zt0<;> (95)
Jj=0

j=0
As n — oo, the last summation goes to zero. Since Z; satisfies (9.4),

t

Zissy =23, % Xy~ + Yy [Was, =W, |
In the limit, we get
n—1
Jim, 2 S Z gl = 2
n—1 ¢ n—1
=n1Lng°Zf Zs,) X“;Jrnlgr;to Z2) Y, [War, = Wa ]

7=0

/f de+/f )Y, dW,

- / 1(2,) dz,

Similarly to the last section, we can see that

n—1

t
JLHgOZf” Zy ) Zons, — 2, = /0 (Zs) d(Z).,
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where (Z); denotes the quadratic variation of Zi,

n—1
(Z)e = lim ZO[Z%lt = Zy)".
]:

If we consider only the quadratic variation of the stochastic integral part of
Zy, we get

¢ n=1[ ,(G+1)t/n 2
</ Y, dWy), = lim / Y, dW,
0 n—oo j=o [Jit/n
n—1
= nh_)m Z([Y{;t +o(1)] [W%t - W%t])2
3=0

¢
:/ Y2 ds.
0

We have left out a number of details here but the basic idea is the same as in
the previous section. Also,

1 (G+D)t/n
Zyry—Zy, =0 = +/ Y, dWs,
" " n jt/n

) 1 (G+1)t/n
(Zos1y = Z4y] ZO(W> + / Ys dW;

jt/n

and hence

We therefore get

n—1
(2)e = Jim, Yl = 74,
j=0
n=1[ (j+1)t/n 2
= lim > / Y, dW,
n—»oojzo jt/n

t t
:(/ stW5>t=/ Y2 ds.
0 0

In other words, the quadratic variation of Z is the same as the quadratic
variation of its “stochastic integral” part. Combining all of this we get the
following.

It6’s Formula II. If f has two continuous derivatives and Z; satisfies (9.4),
then

1(Z2) — 1(Zo) = /f dZ+/f”

/ 1(Z5) Ye dW, + / (2 Xo + L "(2,) Y2 ds.
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We now generalize a little more and assume that f(¢, ) is a function of both
time ¢ and space x. We will need to assume that f has two continuous deriva-
tives in z, and one continuous derivative in t. We will write f'(t, ), f”(t,z)
for the partials with respect to z and f (t,x) for the partial with respect to t.
We can expand f(t, Z;) — f(0, Zo) into two telescoping sums

n—1 .
J+1 J
f(t, Z) — £(0, Zo) = Z [ (—t Z,,ilt> —f (Et,Z%tﬂ
SINE j
() ()]
Using the approximation

f (JTth."%t> '—f (lt1 Zlﬂt> ~ _T;f (ltuZl“‘_lt>a

it can be shown that

nlggloz [ (Jit Zl_t> —f (%t,ZJ#J] = /()tf(s,Zs) ds.

The limit of the second telescoping sum can be handled as before. This gives
the following.

1t6’s Formula IIL. If f(t,z) has two continuous derivatives in x and one
continuous derivative in t, and Z; satisfies (9.4), then

f(t, Z) — £(0, Zo)

/st ds+/st dZ+/f”sZ Z)s

=/ f'(8,Zs) Ys dW
0

t
+/ [F(5,25) + f'(5, Zs) Xs + %f”(s,Zs)Yf]ds.
0

A particular case of this formula occurs when Z; = W;. Then,

f(t’ Wt) - f(O» WO) =

t to. 1
| rwadw.s [, w0+ 5 s W) ds
0 0
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Example 1. Let f(t,z) = e**%® where a,b are real numbers. Then Z, =
e +PWe gatisfies the stochastic differential equation

b2
dZt—bthWt+(a+ )Zt dt.

Equivalently, the solution to the equation
dZt = TZt dt + bZt th
is

Zy :exp{bWt+(r— g)t} (9.6)

Another generalization comes from considering Brownian motion in more
than one dimension. Suppose W; = (W}, ... ,W¢) is a standard d-dimensional
Brownian motion and f(z!,...,2¢) is a function from R¢ to R that has con-
tinuous second derivatives. If we expand f in a Taylor series about z =

(z!,...,z%), we get

+Zfz y—a:

d d
S5 firl@) (F —29) (5 — ) + oIy - al?).

J=1k=1

N =

+

Here we use subscripts to denote partial derivatives. As before, we can write
f(Wy) as a telescoping sum to show that

The first two terms are of the type we have seen. To find the limit of the last
one, we show that the “covariation”

n—1
(W, WHhyi= lim 3 (Wi, —Wi) (Wha, - WE) =0.
=0
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This is done similarly to the quadratic variation in the previous section. In
this case,

n—1
E (W@,wmgm@h—wgﬂ

=0 " " " "
n—1 )
=St [, -l
=0
n—1 )
e () ® () =0
=0

and the variance of the random variable is

S Varl(Wh, - W1,) (Why, ~ WE,)
(Wi, = W1 )2 (Why, — W)

>
n—1

=me@—MﬂMW&—Wﬂ
Z
=0

Therefore, the last term in the telescoping sum for f(W;) — f(Wy) vanishes in
the limit. If f also has a t-dependence, it can be handled as above. We now
summarize. Recall that the Laplacian of f is defined by

d
) = ijj(af)

It6’s Formula IV. Suppose f(t,z',... ,x%) is a function with one continuous
derivative in t and two continuous derivatives in x = (x!,... ,z%). Suppose

)

Wy = (W},... , W) is a standard d-dimensional Brownian motion. Then,

F(6, W) — £(0,Wo) = ‘/ﬁ )W + Av<>+ LAF(W,)] ds.

Stochastic calculus is similar to usual calculus with an additional rule added.
Let us consider calculus from a differential perspective. If h(¢) is a function,
and Ah(t) = h(t + At) — h(t), then h'(t) is defined by the rule

Ah(t) = K (t) At + o(At), At — 0.
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To calculate h'(t), we calculate Ah(t) and then throw away all the terms
that are o(At). For example, suppose h(t) = f(t) g(t) where f and g are
differentiable. Then

Ah(t) = f(t+ At) g(t + At) - f() g(t)
= f(t+At) [g(t + At) — g(t)] + g(¢) [£(¢ + At) — f(D)]
= [f(t) + f'(t) At + o(At)] [¢(t) At + o(At)]
+9(t) [f'(t) At + o(At)]
= [f®) g'(t) + f'(1) ()] At + o(At).

This gives the product rule (fg)' = fg’' + f’g. '

If W},... ,W¢ are independent Brownian motions, then AW, the incre-
ment of the Brownian motion, is of order v/At. Hence, if we multiply two of
them together, we get something of order At, which cannot be thrown away.
If we multiply three of them together, or if we multiply one of them times
a term of order At, then the product is of order (At)?>/2 and can be thrown
away. So, in order to do stochastic calculus one needs only add to usual calcu-
lus the rule for handling products of two Brownian increments. Itd’s formula
tells us what to do. In differential notation, we have

(AW])? = A(WY), = At

(AW7) (AW) = AWI, WH), =0, j#k.

More generally, if

d
dz} = X} dt+» Y] awy, 9.7)
j=1
d . .
dz} = X7dt+» Y7 dW}, (9.8)
i=1

then the covariation term is

d t
(Z',72%), Z/ (Y7 Y2 dt,
ie.,

d
dZ', 2% =Y (YP'Y?)d
i=1
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This allows us to derive the stochastic calculus product rule. Note that we
can write

A(Z}ZE) = Z} A AZE+ ZEAZ} = ZF AZ} + ZE AZ} + AZ{ AZ].

Product Rule. If Z}, Z? satisfy (9.7) and (9.8), then

d(Z}Z}) = Z} dZ} + Z} dZ} + d(Z1, Z%),. (9.9)

Example 2. Exponential Martingale. Suppose dZ; = Y; dW, so that Z;
is a martingale. It6’s formula shows that

1 1
dle?t] = e? Y, dW, + iezt Y2 dt = e?t dZ; + 5eZt d(Z);.

Assume sufficient boundedness so that E [eZt] < 0o; boundedness of Y} is suf-
ficient. One can see from the differential equation that e is a submartingale
(ie., E(e?t | F5) > €%¢) but not a martingale (if Y is nonzero). One way to
obtain a martingale is to subtract the “dt” term. Another way is to multiply
e?t by an appropriate process. Let M; = e?t R; where

1 [t
thexp{—i/ Ysgds}.
0

Note that Ry is random but differentiable; in fact, R, = —(Y;2/2) R;. Since R;
is differentiable, (eZ, R); = 0 (since A(e?* R;) is of order (At)3/2). Therefore
by the product rule we get,

dM; = Ry d(e?t) + e?t dRy = M, Y, dW; = M, dZ,.

Hence, M; is a martingale. This is sometimes called the exponential mar-
tingale since it satisfies an stochastic differential equation analogous to the
exponential differential equation f'(t) = a f(t).

9.5 Continuous Martingales

If W, is a standard Brownian motion; Y; is measurable with respect to J,
the information in W,,0 < s < t; and

t
/ E[Y2?] ds < oo,
0
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then
t
M, =/ Y, dW, (9.10)
0

is a square-integrable martingale, i.e., a martingale with respect to {F;} sat-
isfying E [M?] < co. It is also a continuous martingale which means that with
probability one the function ¢ — M; is continuous. Many of the results from
Chapter 5 have analogues for continuous martingales which can be proved
with little extra effort. Note that if § > 0, then M, := M, is a (discrete
time) martingale with respect to F,, = Fsp. If T is a stopping time with re-
spect to F; we define the stopping time T as the smallest integer n such
that on > T. To determine whether or not T(®) = n it suffices to see the
Brownian motion W; up through time én; therefore T(®) is a stopping time
for the discrete time martingale. By letting § — 0, the following extensions
of results from Chapter 5 can be established.

Optional Sampling Theorem 1. If M, is a continuous martingale and T'
is a bounded stopping time with respect to {Fi}, then

E[Mr] = M.

Optional Sampling Theorem II. If M; is a continuous martingale and T
is a stopping time with respect to {F;} satisfying P{T < oo} = 1;

E[|Mr]] < oo,
and
Jim E M, 1{/T| > £}] =0,
then

E [Mr] = E [Mo).

Maximal Inequality. If M; is a continuous square-integrable martingale of
the form (9.10), then for every a > 0,

M2 t
P{max |Ms|2a}§&2t]=i2/ E[Y?] ds.
0<s<t a a? Jo

If M, is a continuous martingale with respect to F; and T' is a stopping time
then J; = MiaT is a continuous martingale. Here t AT = min{¢,T}. Suppose
U is an open subset of R? and f(¢,z?,... ,xd) is a continuous function that
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has one continuous derivative in ¢ and two continuous derivatives in the spatial
variable provided x = (x!,... ,z%) € U. Suppose Z; satisfies (9.4) and let T
denote the first time ¢ such that Z; is not in U. Then It6’s formula describes
the evolution of f(t AT, Ziar) for t < T. As an example, suppose W; is a
standard d-dimensional Brownian motion and U is a bounded open set in R¢.
Let f : R? — R be a continuous function such that Af(z) = 0 for x in U.
Then, It6’s formula shows that My = f(Wiar) is a continuous martingale. If
Wy € U, then M, is a bounded martingale (since f is a bounded function on
the compact set U), and therefore if z € U,

f(z) =E[Mo | Wo = 2] = E[Mr | Wo = z] = E[f(Wr) | Wo = z].

9.6 Girsanov Transformation

Suppose that we play a simple game. A coin is flipped. If it comes up
heads we win $1; otherwise, we lose a $1. However, suppose the coin in unfair
so that it has probability 3/4 of coming up tails each time. Then this is an
unfair game. There are two natural ways to try to make this a fair game.

e Change the payoff so that we win $1.50 if it comes up heads and lose
only .50 if it comes up tails. In this case the expected winning is zero.

e Change (or replace) the coin so that the probability of a heads is 1/2.

In this section, we will discuss a way of changing a continuous process with
drift to a process without drift that is analogous to the second option above.
Suppose Z; satisfies

dZy = X, dt + Y, dW,, (9.11)

where W; is a standard Brownian motion. We let F; denote the information in
{W;s : s <t}, and we assume that X;,Y; are F;-measurable. If X; is nonzero,
then Z; is not a martingale. One way to get a martingale from Z; is to subtract
the “dt” term. This is analogous to the first option in the previous paragraph.
We will describe another way to obtain a martingale, analogous to the second
option, which is called the Girsanov or Cameron-Martin transformation.

Instead of subtracting the drift, we will change the weight on paths. By
giving greater weight to those paths that are moving in the direction opposite
the drift, we will balance things so that the average drift is zero. To illus-
trate the idea, we will start with a discrete example. Suppose Ji, Js,... are
independent random variables with

]P){J] = 1} ZI—P{Jj = _1} =D,
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where 0 < p < 1. Let So = 0,5, = Ji1 + .-+ J,, and let F,, denote the
information contained in Ji,... ,Jn. If p # 1/2, then S,, is not a martingale
with respect to F,. While S, — n(2p — 1) is a martingale, we will consider
a different martingale obtained by keeping the same paths but changing the
measure. Our process S, can be considered as a measure P on random walk
paths of length n that gives measure p("*+57)/2 (1 — p)(n=5n)/2 6 each partic-
ular path (note that the number of first n steps that are “+1” is (n + S,)/2
and the number of steps that are “—1” is (n — S,,)/2). We can write

Sn/2
_ n p -
S (1 S = pap(a - e ()

Let

M, = [4p(1 — )] /2 (%)S/

We define a measure on paths P by P = M, P. To be more precise, if A4 is
Fn-measurable, then

P(A) = E[14 M,],

where T4 denotes the indicator function. Note that P gives measure 27" to
each path. In particular, the process S,,, under the measure P, is a martingale.

To generalize this idea, we will give a characterization of the weighting
function M,,. What makes this work is the fact that both M, and M, S,, are
martingales (under the measure P), see Exercise 5.10. We need M,, to be a
martingale in order for the measure to be well defined as we now demonstrate.
Suppose A is measurable with respect to F,, and m < n. Then A is also F,-
measurable, so the two formulas for P(A) should give the same answer. But,
since M, is a martingale,

E[M, I4] =E[E(My,I4 | Fr)] =E[Ia E(M, | F)] = E[Mp, L4].

In order for S, to be a martingale under the measure P, we need to show
if m < n, then

Ep(Sn | Fim) = Sm.

Here, E3(Sy | Fm) denotes the conditional expectation using the measure P.
Using the definition of conditional expectation, we see that this equality is
equivalent to showing for all events A that are F,,-measurable,

E (14 Sy M) = E[14 S, M,).

But, this is just another way of saying that E[M, S, | Fn] = My, Sm, ie.,
that M, S, is a martingale.
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We return to continuous case and assume that Z; satisfies (9.11). The new
weight will be given in terms of a nonnegative martingale M; (with respect
to F;) with My = 1. We will define a new measure PP by the relation “dP =
M; dP”. To be more precise, if A is an F;-measurable event, then

P(A) = E[14 M,).

If s <t, and A is F,-measurable, then it is also F;-measurable, so it may look
like P is not well defined. However, since M; is a martingale,

E[la M| =E[E(Ia M | Fs)] = E[la E(My | F5)] = E [1a My].

This shows that P(A) is well defined. We say that M; is the Radon-Nikodym
derivative of P with respect to P. }

We want to choose M; so that Z; is a P-martingale, i.e., a martingale if we
use the measure P. This will be true if M; and M; Z; are both martingales
(with respect to P). This can be seen using an argument as in the discrete
case above.

Suppose M, is a martingale of the form dM; = R; dW;. Then the product
rule tells us that

d[M; Zy) = My dZy + Zy dMy + d{M, Z);
= [Mt Xt + Rt }/t] dt + [Mt }/t + Zt Rt] th
If Ry = —M,; X;/Y; and certain boundedness conditions hold, then this will
be a martingale.

Girsanov transformation. If Z; satisfies (9.11) and M, is a martingale
satisfying

X
dM, = =2 M, dW,,
Y,

then Zy is a martingale with respect to the measure P where

dP = M, dP.

Example 1. Suppose Z; is Brownian motion with drift, i.e.,
dZy = pdt + dWy.

We want Ry = —u M, so we need M; to satisfy the equation
dMy = —p My dW;.

The solution to this is
e HWr

M, — e~ #We=?/2)t _ —
L= E [e AW
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Hence if we weight Brownian motion with drift by M; we get standard Brow-
nian motion. Note that if u > 0, then M; is larger for paths with W; (and
hence Z;) smaller.

Example 2. Suppose Z; satisfies
dZt = TZt dt + bZt th,

see (9.6). Then we would like to find M, satisfying dM; = —(r/b) M; dW;.
We have seen that

M; = exp{—(r/b)W; — (r/b)*t/2}

satisfies this. Hence Z; is a P-martingale where dP = M, dP.

9.7 Feynman-Kac Formula

Suppose Z; satisfies the stochastic differential equation

where a(z), b(z) are fixed functions. Such a Z; is often called a (time homoge-
neous) diffusion. Note that Z; is Markovian, i.e., the dependence of the future
{Zs : s > t} on the past F; lies entirely on the value Z;. There is a close
relationship between diffusions and certain second order partial differential
equations.

Suppose f(z),v(x) are two functions and let

Jy = exp {/Otv(Zs) ds} ,

V(t,z) =E*[f(Z) Ji].

Here E*[Y] denotes E[Y | Zyg = z]. We assume that this expectation exists
for all ¢t,z. If s < ¢, then

t
B2 0 7 = 0. B 120 exo{ [ o2 ar} 1 7,
=Js V(t—s,Zs).
The left-hand side is a martingale since if r < s, then

E[E[f(Z)Ji | Fs) | Fr ] = E[f(Z:) Ji | o).
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Hence, we know that if My = J;V(t — s,Z;), then M, is a martingale for
0 < s <'t. Assuming sufficient differentiability, we can use It6’s formula and
the product rule (9.9) to write

dMy = Js dV(t — 8, Z,) + V(t — 5, Z,) J, ds

=Js W(Z)V(t—s,Zs5) = V(t—38,Zs)+ V'(t —s,Z5)a(Zs)
+% V't —5,Z)b*(Zs)) ds + J, V' (t — 5, Z5) b(Zs) dW.
Since M, is a martingale, the dt term must always be zero, and V satisfies
Vit,z) = —;- V2 (x) V"' (t, x) + a(z) V' (t,z) + v(z) V(t,z).
Feynman-Kac Formula. The solution to the partial differential equation
Vit z) = % W (2) V(L 2) + a(z) V' (t, ) + v(z) V(t,2)

with instial condition V(0,z) = f(x) is

V(t,z) =E* [f(Zt) exp {/Otv(Zs) ds}] ,
where Z; satisfies (9.12).
By setting v = 0, we see that V(¢,z) = E*[f(Z;)] satisfies
V(t,z) = -;- V() V"(t,z) + alz) V'(t, ).
We can write

Belf(20)= [ " ) plt ) dy,

where p(t, x, -) denotes the density of the random variable Z; assuming Z = z.
If we fix x, then p(t,y) = p(t, z,y) is the solution to the equation with initial
condition “delta function” at x. In particular, p satisfies

5(t,) = 5 P0) " (6,9) + alw) P (1,3).

In the next section we will need a Feynman-Kac formula for a time inho-
mogeneous diffusion

dZt = a(t, Zt) dt + b(t, Zt) th (913)

Let v(t,x), f(z) be given functions. We fix a ty and consider only 0 < t < ¢,.

Let
t
Jiy = exp {/ v(s, Zs) ds} ,
0
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and let

Vo) =E [1(z) e [ ® (s, 25) w}| 2=
Then,
E(f(Zs,) Jeo | Fi) = Je V (8, Z).

Since the left-hand side is a martingale, so is the right-hand side. Using the
product rule and It6’s formula we see that

_V(t,z) = % V(1 Z) V" (,2) + alt, Z0) V' (¢, 2) + v(t, Z0) V(E, ) = 0.
(9.14)

Note that V (to,x) = f(x).

Feynman-Kac Formula II. The solution to (9.14) for 0 < t < to with
V(to,iL‘) = f(il:) is

V(t,z) =E® [f(ZtO) exp {/ttov(s,zs) ds}] , (9.15)

where Z; satisfies (9.13).

9.8 Black-Scholes Formula

The Black-Scholes formula is a way to calculate the current value of an
option that is based on the price of a stock following a stochastic differential
equation. Suppose S; denotes the price of a stock, and S; satisfies

dSt = ,LLSt dt + O'St th

By (9.6), the solution of this is

0,2
St :S() exp{(u— ‘2—‘)t+0'Wt} .

Assume also that one can buy or sell a bond with guaranteed interest rate r.
If we let Y; be the amount of money invested in bonds, then if we do not buy
or sell any bonds the amount grows according to the equation

dY; =rY; dt.

A FEuropean call option (with strike price K at time T) is an opportunity
to buy one share of the stock at time T for price K. If S < K such an
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option is useless, but if St > K, then it has a value of Sy — K, which
is the profit obtained by buying the stock and then selling it immediately.
We can write the value as (St — K)4 where x4 = max{z,0}. The Black-
Scholes formula determines the value of this option at a time ¢ < T under
the assumption that there are no arbitrage opportunities. Let V; denote this
value. Clearly Vr = (St — K), and V; should be measurable with respect to
Fi, the information at time ¢. It is reasonable to assume that V; = V (¢, St);
we will determine this function. Note that V(T,z) = (z — K)4.

We can think of the option as an asset with value V; at time ¢ < T'. Suppose
we sell such an option at time ¢ < T and invest the money in a portfolio
consisting of a combination of the stock and the bond, say X; shares of the
stock and Y; invested in the bond. We assume we have a buying and selling
strategy between bonds and stocks based on the stock price at a certain time.
Here Y; is determined by the X; and the relationship that stocks are bought
only with money obtained from selling bonds and vice versa.

The value of the total portfolio (one option sold plus the total of assets in
bonds and stocks) at time s is

Ut B —V(t, St) + Ot,
where

For ease, let us assume that Uy = 0, i.e., at time ¢t = 0 we sold one option and
invested that money in some combination of bond and stock.

Suppose we monitor this investment up to time 7' (switching between shares
of the stock and the bond based on the price of the stock) using a strategy
that guarantees that Ur > 0. If it is also true that with positive probability
Ur > 0, then we have found a way to gain money (with positive probability)
without any risk. This is called an arbitrage. Similarly, if there is a strategy
to guarantee Ur < 0 with a chance that Ur < 0, then there are arbitrage
possibilities by buying an option. The main assumption in the Black-Scholes
formula is: there are no arbitrage opportunities with “self-financing” strate-
gies.

The self-financing assumption is that the change in the total value of the
bond/stock portfolio is given by

In other words, the change in the value is the number of shares of stock times
the change in stock price plus the number of units of the bond times the
change in bond price. Assuming (9.17), we can use Itd’s formula to write

dUt = —dV(t, St) + dOt
— V(4,8 dt — V'(t, ;) dSs % V7 (t, S) d(S):
+X, dS, + Y, dt
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Now, to remove the randomness from the value of the portfolio we choose
X =V'(t,S;). This makes the coefficient of dW; zero and

. 1
dU, = |-V (t,S) — 5v"(t,st)a2 SZ4+rY,| dt. (9.18)

The assumption of no arbitrage tells us that this must equal zero.
Using the product rule (9.9) on (9.16), we see that

dOt = Xt dSt + d)/t + St dXt + d(X, S)t
Hence, the self-financing condition (9.17) can be written as
dYy =rYi dt — Sy dX; — d(X, S):.

Since X; = V'(t, S¢), Ito’s formula gives

dXt = [Vl(t, St) + V”(t,St)MSt + %V”'(t,St)cr? St2] dt

+V”(t, St) (o2 St th

Hence Y; must satisfy

dY, = 1Yy dt — [V’(t, S0) Sy + V(1,80 (u + 0?) 2

1
- 5V’”(t,st)a2 Sf’] dt — V" (t,S;) o S} dW;. (9.19)

Let
th - V(t, St) - St Xt = V(t,St) - St Vl(t, St),

and assume that V(¢,z) has been chosen so the quantity in (9.18) vanishes,
ie.,

V(t,z) + %xz 2V (t,z) +raV(tz) - r V(L z) = 0. (9.20)

Then an It6’s formula calculation shows that (9.19) holds.

One can get lost in the calculation, so it is worth understanding why it
works. If there are no arbitrage opportunities and the option is priced prop-
erly, then any strategy that produces no randomness must also produce no
gain or loss. Hence the current value of the portfolio, O, must also be the
price of the option at that time, i.e., V(¢,S;) = O;. Since we know that we
must have V' (¢, S¢) shares of the stock to hedge the option, the assets in bonds
must be

Y, =0y — X1 Sy = V(t,S) — V'(t,5,) Sp.
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Plugging into (9.18) we get the Black-Scholes equation (9.20).

Note that the Black-Scholes equation has r and o? as parameters but p
does not appear! The value of the option depends only on the bond rate and
the variance parameter (sometimes called the volatility) 0. We need to find
the solution of this equation with boundary condition V(T,z) = (z — K).
The dependence on r can be removed by a simple change of variables: if V
satisfies (9.20) with r =0,

. 1
V(t,z) + 3 22 a? V" (t,z) = 0, (9.21)

and V(t,z) = "¢~ V(t,e"(T-1z), then V (¢, z) satisfies (9.20) and V (T, z) =
V(T,z). This can be checked by differentiation (Exercise 9.7); however, there
is a simple reason why this is true. If money grows at rate r, then x dollars
at time T is the equivalent of e"*~T)z dollars at time ¢. Hence, it suffices to
solve the equation when r = 0.

A probabilistic form for the solution of (9.21) is given by the Feynman-Kac
formula (9.15); in fact, this form can be used for options with different payoffs
V(T,z) = g(x). Assume r = 0. Remembering that V (¢, S;) = O, we get

dv(t,S;) = V'(t,S;) dS;.
If V(t,S;) were a martingale, we would know that
E[V(t,5)] = E[V(T, Sr)] = E[g(ST)).
Recall that S; satisfies
dS; = u Sy dt + 0 Sy dW;.

This is a martingale only if 4 = 0. However, we have seen that the value of
the option does not depend on the value of i, so we can set u =0. If u =0
the solution to the stochastic differential equation is

2
S; = exp {O'Wt — %t} .
Then we have
V(T —t,z) =E[g(S:) | St = z]
o?t
=E |g|exp{ocW; — —5—} | Wy =

=E [g (xe‘”zt/ze"‘/zNﬂ ,

logx]

where N is a standard unit normal.
Suppose g(y) = (y — K). Then,

V(T =t 22) = E[(z VN — K),].
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A straightforward, although tedious, calculation (see Exercise 9.4) shows that
the right-hand side is

2o 2 g (log(x/gf(\'/);— a2t) ko <log0(a\csz)> 7

where ® denote the standard normal distribution function. Hence V(T —¢, x)
is given by

log(z/K) + (1/2) 0%t log(z/K) — (1/2) 0%t
o (MELERA) - o (RSB,

This is the solution for r = 0, and we can easily convert it to the solution for
general r.

Black-Scholes Formula. Suppose V (t,x) is the solution to (9.19) satisfying
V(T,z) =(x — K),. Then V(T —t,x) equals

o <log(m/f<> +(r+ ‘é)t) ke ® <log<m/1<> +(r= %f)t) 7

oVt oVt

where ® is the standard normal distribution function.

Let us generalize and assume that S; satisfies
dSt = /.L(t, St) St dt + O'(t, St) St th,

where u(t,z),o(t,z) are given functions. We cannot give an explicit solu-
tion to this stochastic differential equation. However, we can still give an
expression for the value of a European call option. We assume that we have a
self-financing portfolio with value O; = X; S; + Y; that “hedges” the option.
If V(t,x) denotes the value of the option, then we choose X; = —V'(t,S;)
in order to remove the randomness. Assuming no arbitrage, the value of the
portfolio using the hedging strategy is exactly the same as the value of the op-
tion at that time. Therefore Y; = Oy — X; S; = V (¢, S;) — V'(¢,St) S;. Hence,
we again obtain the Black-Scholes equation (9.20) where o2 is replaced with
o2%(t,z). We need to find the solution to

. 1
V(t,z) + 5 a2(t,x) V" (t,x) +rx V'(t,x) — rV(t,z) = 0,

with V(T,z) = g(x). Note again that u(t,z) does not appear in the equation.
In most cases, there is no closed form for this solution. However, the Feynman-
Kac formula (9.15) gives the value in terms of an expectation that can be
estimated by simulation.
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9.9 Simulation

Consider a stochastic differential equation
dXt = G(Xt) dt + b(Xt) th,

where a and b are relatively nice functions of xz and W; denotes a standard
Brownian motion. The solution is a process X; that at any particular time
looks like a Brownian motion with drift parameter a(X;) and variance pa-
rameter b(X;). While it is often difficult to give an explicit solution to the
equation, it is easy to simulate the process on a computer using a random
walk.

Choose some small number At. We can approximate the Brownian motion
by a simple random walk with time increments At and space increments v/At.
To do this let Y7, Ys,... be independent random variables with

P(Yi=1) = B{¥;= 1} = ;.

We set Xo = 0 and for n > 0,
Xnat = Xn-1)ar + a(Xm-nyae) At + 0(X(n-1)at) VAL Yy

In practice, it is often just as easy to make the increments normal. If Z;, Zs, . ..
are independent standard unit normals, we can set Xg = 0 and for n > 0,

Xnat = Xn-1)at + a(Xn-1yae) At + (X (n_1)at) VAL Zy.

9.10 Exercises

9.1 Let W, be a standard one-dimensional Brownian motion with Wy =1
and let r be a real number. Let T be the first time that W; = 0. Let R, = W/ .

(a) Write the stochastic differential equation for R; (valid for ¢t < T, i.e.,
find f, g such that

dR; = f(R:) dt + g(R;) dW,.

(b) Find a function F such that M;ar is a martingale where

M, = R, exp {/Ot F(Rs)ds} .
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9.2 Let d > 1 and let W; denote a standard d-dimensional Brownian motion
starting at x # 0. Let M; = log|W,| if d = 2 and M; = [W;|?>~¢ if d > 2.
Show that M; is a martingale.

9.3 Let W, be a standard one-dimensional Brownian motion and let a,b > 0.
Let T, _p be the first time ¢ such that W; = a or W, = —b.
(a) Use the martingale W; to find P{Wr, _, = a}.
(b) Use the martingale W2 — t to find E [T}, _).
(c) Explain why the random variables T, _, and Wr, _, are independent.
(d) Are the random variables T, _, and Wr, _, independent for all a,b?
(c) Use the martingale e*W:~
tion for T, _,.

(A/2)t to compute the moment generating func-

9.4 Suppose N is a standard unit normal and X = ae®™ where a,b > 0.
Show that the density of X is

fa) = o (D), 0<rco,

where ¢(z) = (27)"1e=2"/2 is the density for N. If K > 0, show that

AR

/2 (bg(a/f) + b?) Ko (l_gg(«lz)ﬂ ) |

where ® denotes the distribution function for N

9.5 Let X1, Xo,... be independent N(0,1) random variables and let f be a
bounded continuous function. Let Zy = 0 and for n > 0,

Zn = Ldnp-1 + f(Zn—-l) +Xn

We will do the Girsanov transformation for Z,, to make Z,, a martingale (with
respect to F,, where F, is the information in Xi,...,X,).

(a) If a is a real number, compute E [X;eX1]. (One can do it directly, or
one can differentiate the moment generating function E [e2X1] with respect to

a.)
(b) Let My =1 and for n > 0,

n . 2
n = €Xp Zf 1) J'_ZLZJQ_—I)_
j=1

Show that M, is a martingale with respect to F,.
(c) Show that M,, Z, is a martingale with respect to F,.
(d) Show that Z, is a P-martingale where dP = M,, dP.
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9.6 Suppose W; is a standard one-dimensional Brownian motion. Suppose
Zy =1 and Z; satisfies the Bessel equation

a
dzZ; = A dt + dW;.

Here a is a real number and we only consider ¢t < T' = min{s : Z, = 0}.

(a) Find a nonconstant differentiable function ¢ such that M; = ¢(Ziar)
is a martingale. (Hint: use It&’s formula to find a differential equation that ¢
should satisfy and then solve the equation.)

(b)If0 < e <1< aand S = S(e,a) denotes the first time ¢ such that
Zy=¢€or Z; = a, find P{Zs = €}.

(c) Find the probability that there exists some time t with Z; = €. For
which values of a is this probability equal to one?

(d) For which values of a does the process reach the origin in finite time?

9.7 Show that if V (¢, z) satisfies (9.21), then V (t,z) := e"*=T) V(t,e"(T-1)z)
satisfies (9.20).

9.8 COMPUTER SIMULATION. Assume X; is a process satisfying the
stochastic differential equation

dXt = a(Xt) dt + b(Xt) th,

where

2, x>0
b(m):{l z <0.

Using At = 1/100 run many simulations of X;. Estimate the following

(a) E(X,),

(b) P{X; > 0} You may wish to use both +1 and normal increments and
compare the results.

9.9 Do Exercise 9.8 with



Suggestions for Further Reading

There are many possibilities for additional reading. We make a few suggestions
here, but this is not intended to be a complete list.

Background in probability at an undergraduate level:

G. Grimmett and D. Stirzaker, Probability and Random Processes, Oxford
University Press.
J. Pitman, Probability, Springer-Verlag.

Stochastic processes at the level of this book:

G. Grimmett and D. Stirzaker, Probability and Random Processes, Oxford
University Press.

S. Karlin and H. Taylor, A4 First Course in Stochastic Processes and A
Second Course in Stochastic Processes, Academic Press.

S. Resnik, Adventures in Stochastic Processes, Birkhauser.

To pursue stochastic processes at a higher level, it is necessary to have a
background in advanced calculus (undergraduate real analysis) and measure
theory. One possibility for each of these is:

R. Strichartz, The Way of Analysis, Jones and Bartlett Mathematics.
R. Bartle, The Elements of Integration and Lebesgue Measure, Wiley.

The next step is to learn probability at a measure-theoretic level. These books
contain some of the measure theory as well:

P. Billingsley, Probability and Measure, Wiley.

R. Durrett, Probability: Theory and Examples, Thomson Brooks/Cole.
J. Jacod & P. Protter, Probability Essentials, Springer-Verlag.

D. Williams, Probability with Martingales, Cambridge University Press.

For treatments of Brownian motion and stochastic calculus using measure-
theoretic probability theory:

K. Chung & R. Williams, An Introduction to Stochastic Integration, Birkhauser.

R. Durrett, Stochastic Calculus: A Practical Introduction, CRC Press.

I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Springer-

Verlag.
B. @ksendal, Stochastic Differential Equations, Springer-Verlag.
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Black-Scholes formula 227
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Dirichlet problem 92, 186
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equilibrium distribution, see invari-
ant distribution

explosion 81

exponential alarm clocks 69, 72

exponential distribution 68

exponential martingale 216

extinction probability 55-57

Feynman-Kac formula 221-223
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forward equation 82
fractal dimension 181-182

gambler’s ruin 30-31, 112-113, 187
generating function 55

Gibbs samplers 165

Girsanov transformation 220
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harmonic function 119, 168, 218
heat equation 186-189

infinitesimal generator 70

invariant distribution 15, 51-52, 73,
78

irreducibility 20, 76

Ising model 164

Ito’s formula 205-216

Jensen’s inequality 125

Markov chains
countable 43
finite 9
finite, continuous-time 68-74
Monte Carlo 162-166
reversible 155
Markov property 1, 9, 176-177
martingale 106, 217
martingale betting strategy 107-108
martingale convergence theorem 117
measurable 103
Metropolis algorithms 165

null recurrence 51-53, 78
optimal stopping 87-97

optional sampling theorem 112, 115,
217
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periodic 21-24

Perron—Frobenius theorem 17, 40-
41

Poisson process 65-68, 131

Polya’s urn 109, 116-117, 119, 122

positive recurrence 51-53, 78

quadratic variation 51-51, 207, 211
queues 10, 44-45
G/M/1 150-151
M/G/1 133, 148-149
M/M/k 75

random harmonic series 115-116, 119

random walk
absorbing boundary 12, 18, 30-
31
biased 12
graph 12, 21, 31
partially reflecting 44, 52-53
reflecting boundary 11, 18, 29
simple 44, 46-49
symmetric 12
recurrence 50-53, 77, 119-120, 189-
191
recurrent class 20, 29-30
reflection principle 122, 178
renewal equation 138
renewal process 131
age 133, 138-141, 145
central limit theorem 135
law of large numbers 134
lifetime 141-142, 147
residual life 141-142, 146
renewal theorems 136-137
return times 25, 51, 131-132

self-financing 224

simple strategy 201

state space 1

stationary distribution, see invari-
ant distribution

steady-state distribution, see invari-
ant distribution

Stirling’s formula 47-63

stochastic integral 199-228

stochastic matrix 10

stochastic process 1

stopping time 88, 110, 177

strong Markov property 147

substochastic matrix 27

submartingale 109, 123

superharmonic function 62, 89

supermartingale 109

transience 50-53, 77, 119-120, 189-
191

transient class 20, 26-30

transition matrix 10

uniform integrability 114-116
value 89

waiting times 67-68, 69
Wald’s equation 129, 149

Wiener process 174

Yule process 76, 79-80
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